全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2009 

Intrinsic volumes of inscribed random polytopes in smooth convex bodies

DOI: 10.1239/aap/1282924055

Full-Text   Cite this paper   Add to My Lib

Abstract:

Let $K$ be a $d$ dimensional convex body with a twice continuously differentiable boundary and everywhere positive Gauss-Kronecker curvature. Denote by $K_n$ the convex hull of $n$ points chosen randomly and independently from $K$ according to the uniform distribution. Matching lower and upper bounds are obtained for the orders of magnitude of the variances of the $s$-th intrinsic volumes $V_s(K_n)$ of $K_n$ for $s\in\{1, ..., d\}$. Furthermore, strong laws of large numbers are proved for the intrinsic volumes of $K_n$. The essential tools are the Economic Cap Covering Theorem of B\'ar\'any and Larman, and the Efron-Stein jackknife inequality.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133