全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

Spectral gaps of the one-dimensional Schr?dinger operators with singular periodic potentials

Full-Text   Cite this paper   Add to My Lib

Abstract:

The behaviour of the lengths of spectral gaps $\{\gamma_{n}(q)\}_{n=1}^{\infty}$ of the Hill-Schr\"odinger operators S(q)u=-u''+q(x)u,\quad u\in \mathrm{Dom}(S(q)) with real-valued 1-periodic distributional potentials $q(x)\in H_{1{-}per}^{-1}(\mathbb{R})$ is studied. We show that they exhibit the same behaviour as the Fourier coefficients $\{\widehat{q}(n)\}_{n=-\infty}^{\infty}$ of the potentials $q(x)$ with respect to the weighted sequence spaces $h^{s,\varphi}$, $s>-1$, $\varphi\in \mathrm{SV}$. The case $q(x)\in L_{1{-}per}^{2}(\mathbb{R})$, $s\in \mathbb{Z}_{+}$, $\varphi\equiv 1$ corresponds to the Marchenko-Ostrovskii Theorem.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133