全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

Moduli of Flat Conformal Structures of Hyperbolic Type

Full-Text   Cite this paper   Add to My Lib

Abstract:

To each flat conformal structure (FCS) of hyperbolic type in the sense of Kulkarni-Pinkall, we associate, for all $\theta\in[(n-1)\pi/2,n\pi/2[$ and for all $r>\opTan(\theta/n)$ a unique immersed hypersurface $\Sigma_{r,\theta}=(M,i_{r,\theta})$ in $\Bbb{H}^{n+1}$ of constant $\theta$-special Lagrangian curvature equal to $r$. We show that these hypersurfaces smoothly approximate the boundary of the canonical hyperbolic end associated to the FCS by Kulkarni and Pinkall and thus obtain results concerning the continuous dependance of the hyperbolic end and of the Kulkarni-Pinkall metric on the flat conformal structure.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133