|
Mathematics 2008
Measure conjugacy invariants for actions of countable sofic groupsAbstract: Sofic groups were defined implicitly by Gromov in [Gr99] and explicitly by Weiss in [We00]. All residually finite groups (and hence every linear group) is sofic. The purpose of this paper is to introduce, for every countable sofic group $G$, a family of measure-conjugacy invariants for measure-preserving $G$-actions on probability spaces. These invariants generalize Kolmogorov-Sinai entropy for actions of amenable groups. They are computed exactly for Bernoulli shifts over $G$, leading to a complete classification of Bernoulli systems up to measure-conjugacy for many groups including all countable linear groups. Recent rigidity results of Y. Kida and S. Popa are utilized to classify Bernoulli shifts over mapping class groups and property T groups up to orbit equivalence and von Neumann equivalence respectively.
|