全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2008 

The modified Calabi-Yau problems for CR-manifolds and applications

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we derive a partial result related to a question of Yau: "Does a simply-connected complete K\"ahler manifold M with negative sectional curvature admit a bounded non-constant holomorphic function?" Main Theorem. Let $M^{2n}$ be a simply-connected complete K\"ahler manifold M with negative sectional curvature $ \le -1 $ and $S_\infty(M)$ be the sphere at infinity of $M$. Then there is an explicit {\it bounded} contact form $\beta$ defined on the entire manifold $M^{2n}$. Consequently, the sphere $S_\infty(M)$ at infinity of M admits a {\it bounded} contact structure and a bounded pseudo-Hermitian metric in the sense of Tanaka-Webster. We also discuss several open modified problems of Calabi and Yau for Alexandrov spaces and CR-manifolds.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133