全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2007 

Two new Weyl-type bounds for the Dirichlet Laplacian

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper, we prove two new Weyl-type upper estimates for the eigenvalues of the Dirichlet Laplacian. As a consequence, we obtain the following {\em lower} bounds for its counting function. For $\la\ge \la_1$, one has N(\la) > \dfrac{2}{n+2} \dfrac{1}{H_n} (\la-\la_1)^{n/2} \la_1^{-n/2}, and N(\la) > (\dfrac{n+2}{n+4})^{n/2} \dfrac{1}{H_n} (\la-(1+4/n) \la_1)^{n/2} \la_1^{-n/2}, where H_n=\dfrac{2 n}{j_{n/2-1,1}^2 J_{n/2}^2(j_{n/2-1,1})} is a constant which depends on $n$, the dimension of the underlying space, and Bessel functions and their zeros.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133