|
Mathematics 2007
Analytic vectors in continuous p-adic representationsDOI: 10.1112/S0010437X08003825 Abstract: Given a compact p-adic Lie group G over a finite unramified extension L/Q_p let G_0 be the product over all Galois conjugates of G. We construct an exact and faithful functor from admissible G-Banach space representations to admissible locally L-analytic G_0-representations that coincides with passage to analytic vectors in case L=Q_p. On the other hand, we study the functor "passage to analytic vectors" and its derived functors over general basefields. As an application we determine the higher analytic vectors in certain locally analytic induced representations.
|