全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2007 

The Lie-Poisson Structure of the Euler Equations of an Ideal Fluid

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper provides a precise sense in which the time t map for the Euler equations of an ideal fluid in a region in R^n (or a smooth compact n-manifold with boundary) is a Poisson map relative to the Lie-Poisson bracket associated with the group of volume preserving diffeomorphism group. This is interesting and nontrivial because in Eulerian representation, the time t maps need not be C^1 from the Sobolev class H^s to itself (where s > (n/2) + 1). The idea of how this difficulty is overcome is to exploit the fact that one does have smoothness in the Lagrangian representation and then carefully perform a Lie-Poisson reduction procedure.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133