全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2006 

Image of the spectral measure of a Jacobi field and the corresponding operators

Full-Text   Cite this paper   Add to My Lib

Abstract:

By definition, a Jacobi field $J=(J(\phi))_{\phi\in H_+}$ is a family of commuting selfadjoint three-diagonal operators in the Fock space $\mathcal F(H)$. The operators $J(\phi)$ are indexed by the vectors of a real Hilbert space $H_+$. The spectral measure $\rho$ of the field $J$ is defined on the space $H_-$ of functionals over $H_+$. The image of the measure $\rho$ under a mapping $K^+:T_-\to H_-$ is a probability measure $\rho_K$ on $T_-$. We obtain a family $J_K$ of operators whose spectral measure is equal to $\rho_K$. We also obtain the chaotic decomposition for the space $L^2(T_-,d\rho_K)$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133