全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2006 

On the asymptotic number of edge states for magnetic Schr?dinger operators

Full-Text   Cite this paper   Add to My Lib

Abstract:

We consider a Schr\"odinger operator $(h\mathbf D -\mathbf A)^2$ with a positive magnetic field $B=\curl\mathbf A$ in a domain $\Omega\subset\R^2$. The imposing of Neumann boundary conditions leads to spectrum below $h\inf B$. This is a boundary effect and it is related to the existence of edge states of the system. We show that the number of these eigenvalues, in the semi-classical limit $h\to 0$, is governed by a Weyl-type law and that it involves a symbol on $\partial\Omega$. In the particular case of a constant magnetic field, the curvature plays a major role.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133