全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Mathematics  2005 

Classification of quasifinite $W_\infty$-modules

Full-Text   Cite this paper   Add to My Lib

Abstract:

It is proved that an irreducible quasifinite $W_\infty$-module is a highest or lowest weight module or a module of the intermediate series; a uniformly bounded indecomposable weight $W_\infty$-module is a module of the intermediate series. For a nondegenerate additive subgroup $G$ of $F^n$, where $F$ is a field of characteristic zero, there is a simple Lie or associative algebra $W(G,n)^{(1)}$ spanned by differential operators $uD_1^{m_1}... D_n^{m_n}$ for $u\in F[G]$ (the group algebra), and $m_i\ge0$ with $\sum_{i=1}^n m_i\ge1$, where $D_i$ are degree operators. It is also proved that an indecomposable quasifinite weight $W(G,n)^{(1)}$-module is a module of the intermediate series if $G$ is not isomorphic to $Z$.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133