全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Global Stability for a Binge Drinking Model with Two Stages

DOI: 10.1155/2012/829386

Full-Text   Cite this paper   Add to My Lib

Abstract:

A more realistic two-stage model for binge drinking problem is introduced, where the youths with alcohol problems are divided into those who admit the problem and those who do not admit it. We also consider the direct transfer from the class of susceptible individuals towards the class of admitting drinkers. Mathematical analyses establish that the global dynamics of the model are determined by the basic reproduction number, . The alcohol-free equilibrium is globally asymptotically stable, and the alcohol problems are eliminated from the population if . A unique alcohol-present equilibrium is globally asymptotically stable if . Numerical simulations are also conducted in the analytic results. 1. Introduction Young people’s binge drinking problem is a major concern to public health. Recently, US surveys indicate that approximately 90% of college students have consumed alcohol at least once [1], and more than of college students have engaged in binge drinking [2, 3]. The binge drinking refers to youths in 17–30 age group who drink a large amount of alcohol and become so drunk; they are likely to exhibit antisocial behavior [4]. Although there have been many attempts to reduce the problem, alcohol abuse by college students has persisted and in some cases increased over the past several decades [5]. Prior studies have indicated that heavy alcohol drinkers are likely to engage in risky sexual behaviours and more likely to get sexually transmitted infection than social drinkers [6, 7]. There is a strong medical evidence that treatment of individuals with alcohol problems is a major issue [8–10]. Thus, it is very important to use a mathematical method to study the binge drinking problems in youths. A simple model for alcohol treatment is presented by Sanchez et al. [11]. Since then, there have been numerous studies investigating campus drinking and the associated consequences [12–15]. Manthey et al. [12] focus on a college campus, divide the student population into three classes: nondrinkers, social drinkers and problem drinkers, and show that campus alcohol abuse may be reduced by minimizing the ability of problem drinkers to directly recruit nondrinkers. Cintron-Arias et al. [13] focus on situations where relapse rates are high and conclude that the systematic removal of individuals from high-risk environments, or the development of programs that limit access or reduce the residence times in such environments (or both approaches combined), may reduce the level of alcohol abuse. Mubayi et al. [14] show that if the relative residence times of moderate drinkers

References

[1]  L. D. Johnston, P. M. OMalley, and J. G. Bachman, “National survey results on drug use from the monitoring the future study, 1975–1992,” National Institute on Drug Abuse, Rockville, Md, USA, 1993.
[2]  H. Wechsler, J. E. Lee, M. Kuo, and H. Lee, “College binge drinking in the 1990s: a continuing problem. Results of the Harvard School of Public Health 1999 College Alcohol Study,” Journal of American College Health, vol. 48, no. 5, pp. 199–210, 2000.
[3]  P. M. O'Malley and L. D. Johnston, “Epidemiology of alcohol and other drug use among American college students,” Journal of Studies on Alcohol, vol. 63, no. 14, pp. 23–39, 2002.
[4]  P. Ormerod and G. Wiltshire, ““Binge” drinking in the UK: a social network phenomenon,” Mind and Society, vol. 8, no. 2, pp. 135–152, 2009.
[5]  H. Wechsler, J. E. Lee, T. F. Nelson, and M. Kuo, “Underage college students' drinking behavior, access to alcohol, and the influence of deterrence policies: findings from the Harvard School of Public Health College Alcohol Study,” Journal of American College Health, vol. 50, no. 5, pp. 223–236, 2002.
[6]  S. Mushayabasa and C. P. Bhunu, “Modelling the effects of heavy alcohol consumption onthetransmission dynamics of gonorrhea,” Nonlinear Dynamics, vol. 66, pp. 695–706, 2011.
[7]  G. Thomas and E. M. Lungu, “The influence of heavy alcohol consumption on HIV infection and progression,” Journal of Biological Systems, vol. 17, no. 4, pp. 685–712, 2009.
[8]  L. Deacon, S. Hughes, K. Tocque, and M. A. Bellis, Eds., “Indications of public health in English regions. 8,” Alcohol, Association of Public Health Observatories, York, UK, 2007.
[9]  G. Hay, M. Gannon, J. MacDougall, T. Millar, C. Eastwood, and N. McKeganey, “Local and national estimates of the prevalence of opiate use and/or crack cocaine use,” in Measuring Different Aspects of Problem Drug Use: Methodological Developments, N. Singleton, R. Murray, and L. Tinsley, Eds., Online report OLR 16/06, London, UK, 2006.
[10]  M. S. Goldman, G. M. Boyd, and V. Faden, “College drinking, what is it, and what to do about it: a review of the state of the science,” Journal of Studies for Alcohol, vol. 14, pp. 1–250, 2002.
[11]  F. Sanchez, X. H. Wang, C. Castillo-Chavez, D. M. Gorman, and P. J. Gruenewald, “Drinking as an epidemica simple mathematical model with recovery and relapse,” in Therapists Guide to Evidence-Based Relapse Prevention: Practical Resources for the Mental Health Professional, K. A. Witkiewitz and G. A. Marlatt, Eds., pp. 353–368, Academic Press, Burlington, Vt, USA, 2007.
[12]  J. L. Manthey, A. Y. Aidoo, and K. Y. Ward, “Campus drinking: an epidemiological model,” Journal of Biological Dynamics, vol. 2, no. 3, pp. 346–356, 2008.
[13]  A. Cintron-Arias, F. Sanchez, X. H. Wang, C. Castillo-Chavez, D. M. Gorman, and P. J. Gruenewald, “The role of nonlinear relapse on contagion amongst drinking communities,” in Mathematical and Statistical Estimation Approaches in Epidemiology, pp. 343–360, Springer, New York, NY, USA, 2009.
[14]  A. Mubayi, P. E. Greenwood, C. Castillo-Chávez, P. J. Gruenewald, and D. M. Gorman, “The impact of relative residence times on the distribution of heavy drinkers in highly distinct environments,” Socio-Economic Planning Sciences, vol. 44, no. 1, pp. 45–56, 2010.
[15]  G. Mulone and B. Straughan, “Modeling binge drinking,” International Journal of Biomathematics, vol. 5, no. 1, Article ID 1250005, 14 pages, 2012.
[16]  S. Reinberg, “Third of Americans Have Alcohol Problems at Some Point,” 2007, http://www.washingtonpost.com/wp-dyn/content/article/2007/07/02/AR2007070201237.html.
[17]  H. W. Hethcote, “The mathematics of infectious diseases,” SIAM Review, vol. 42, no. 4, pp. 599–653, 2000.
[18]  P. van den Driessche and J. Watmough, “Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission,” Mathematical Biosciences, vol. 180, pp. 29–48, 2002.
[19]  V. Lakshmikantham, S. Leela, and A. A. Martynyuk, Stability Analysis of Nonlinear Systems, vol. 125, Marcel Dekker, New York, Ny, USA, 1989.
[20]  X. Tian and R. Xu, “Stability analysis of a delayed SIR epidemic model with stage structure and nonlinear incidence,” Discrete Dynamics in Nature and Society, vol. 2009, Article ID 979217, 17 pages, 2009.
[21]  S. Yuan and B. Li, “Global dynamics of an epidemic model with a ratio-dependent nonlinear incidence rate,” Discrete Dynamics in Nature and Society, vol. 2009, Article ID 609306, 13 pages, 2009.
[22]  J. Li, Y. Yang, and Y. Zhou, “Global stability of an epidemic model with latent stage and vaccination,” Nonlinear Analysis. Real World Applications, vol. 12, no. 4, pp. 2163–2173, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133