One of the most important assessment indicators of computer virus infections is epidemic tipping point. Although many researchers have focused on the effects of scale-free network power-law connectivity distributions on computer virus epidemic dynamics and tipping points, few have comprehensively considered resource limitations and costs. Our goals for this paper are to show that (a) opposed to the current consensus, a significant epidemic tipping point does exist when resource limitations and costs are considered and (b) it is possible to control the spread of a computer virus in a scale-free network if resources are restricted and if costs associated with infection events are significantly increased. 1. Introduction Research on the epidemic dynamics of computer viruses has increasingly incorporated Watts and Strogatz’s [1] description of small-world networks (characterized by tightly clustered connections and short paths between node pairs) and Barabási and Albert’s [2] insights regarding scale-free networks marked by power-law connectivity distributions. The list of researchers using network approaches to computer virus models and analyses also includes Kuperman and Abramson [3], Newman [4, 5], Newman and Watts [6], Pastor-Satorras and Vespignani [7–11], Watts [12], and X. Yang and L. X. Yang [13]. All of these investigators have noted that the topological properties underlying communication networks exert considerable influence on computer virus epidemic dynamics and spreading characteristics and support subtle analyses that non-network-directed approaches cannot. A central issue for researchers using a network analysis approach is whether or not tipping points exist when computer viruses are spread via the Internet [7–11, 14–17]. According to Pastor-Satorras and Vespignani [7–11], Internet-based viruses and worms do not have positive epidemic tipping points, other researchers of epidemic dynamics and tipping points in scale-free networks also consistently argue that, regardless of spreading capability, all Internet-based computer viruses have high probabilities of stability and survival [18–21]. Note that new computer viruses are constantly emerging on the Internet, but the majority disappear almost immediately, and a tiny minority achieve epidemic status. This observation serves as our motivation to take a more detailed look at daily interaction and communication process limitations among users of e-mail, instant messaging software, online social network platforms, USB flash drives, and smart phones rather than the topological power-law
References
[1]
D. J. Watts and S. H. Strogatz, “Collective dynamics of “small-world” networks,” Nature, vol. 393, no. 6684, pp. 440–442, 1998.
[2]
A.-L. Barabási and R. Albert, “Emergence of scaling in random networks,” Science, vol. 286, no. 5439, pp. 509–512, 1999.
[3]
M. Kuperman and G. Abramson, “Small world effect in an epidemiological model,” Physical Review Letters, vol. 86, no. 13, pp. 2909–2912, 2001.
[4]
M. E. J. Newman, “Spread of epidemic disease on networks,” Physical Review E, vol. 66, no. 1, Article ID 016128, 11 pages, 2002.
[5]
M. E. J. Newman, “The structure and function of complex networks,” SIAM Review, vol. 45, no. 2, pp. 167–256, 2003.
[6]
M. E. J. Newman and D. J. Watts, “Scaling and percolation in the small-world network model,” Physical Review E, vol. 60, no. 6, pp. 7332–7342, 1999.
[7]
R. Pastor-Satorras and A. Vespignani, “Epidemic spreading in scale-free networks,” Physical Review Letters, vol. 86, no. 14, pp. 3200–3203, 2001.
[8]
R. Pastor-Satorras and A. Vespignani, “Epidemic dynamics and endemic states in complex networks,” Physical Review E, vol. 63, Article ID 066117, 8 pages, 2001.
[9]
R. Pastor-Satorras and A. Vespignani, “Immunization of complex networks,” Physical Review E, vol. 65, Article ID 036104, 8 pages, 2002.
[10]
R. Pastor-Satorras and A. Vespignani, “Epidemic dynamics in finite size scale-free networks,” Physical Review E, vol. 65, no. 3, Article ID 035108, 4 pages, 2002.
[11]
R. Pastor-Satorras and A. Vespignani, “Epidemics and immunization in scale-free networks,” in Handbook of Graphs and Networks, S. Bornholdt and H. G. Schuster, Eds., Wiley-VCH, Berlin, Germany, 2003.
[12]
D. J. Watts, Six Degrees: The Science of a Connected Age, W. W. Norton & Company, New York, NY, USA, 2003.
[13]
X. Yang and L. X. Yang, “Towards the epidemiological modeling of computer viruses,” Discrete Dynamics in Nature and Society, vol. 2012, Article ID 259671, 11 pages, 2012.
[14]
M. Bogu?á and R. Pastor-Satorras, “Epidemic spreading in correlated complex networks,” Physical Review E, vol. 66, no. 4, Article ID 047104, 4 pages, 2002.
[15]
R. M. May and A. L. Lloyd, “Infection dynamics on scale-free networks,” Physical Review E, vol. 64, no. 6, Article ID 066112, 4 pages, 2001.
[16]
Y. Moreno, R. Pastor-Satorras, and A. Vespignani, “Epidemic outbreaks in complex heterogeneous networks,” European Physical Journal B, vol. 26, no. 4, pp. 521–529, 2002.
[17]
Q. Zhu, X. Yang, and J. Ren, “Modeling and analysis of the spread of computer virus,” Communications in Nonlinear Science and Numerical Simulation, vol. 17, no. 12, pp. 5117–5124, 2012.
[18]
Z. Dezs? and A. L. Barabási, “Halting viruses in scale-free networks,” Physical Review E, vol. 65, no. 5, Article ID 055103, 4 pages, 2002.
[19]
Z. Liu, Y. C. Lai, and N. Ye, “Propagation and immunization of infection on general networks with both homogeneous and heterogeneous components,” Physical Review E, vol. 67, no. 3, Article ID 031911, 5 pages, 2003.
[20]
Y. Moreno, J. B. Gómez, and A. F. Pacheco, “Epidemic incidence in correlated complex networks,” Physical Review E, vol. 68, no. 3, Article ID 035103, 4 pages, 2003.
[21]
D. Volchenkov, L. Volchenkova, and P. Blanchard, “Epidemic spreading in a variety of scale free networks,” Physical Review E, vol. 66, no. 4, Article ID 046137, 9 pages, 2002.
[22]
L.-X. Yang and X. Yang, “Propagation behavior of virus codes in the situation that infected computers are connected to the internet with positive probability,” Discrete Dynamics in Nature and Society, vol. 2012, Article ID 693695, 13 pages, 2012.
[23]
C. Gan, X. Yang, W. Liu, Q. Zhu, and X. Zhang, “Propagation of computer virus under human intervention: a dynamical model,” Discrete Dynamics in Nature and Society, vol. 2012, Article ID 106950, 8 pages, 2012.
[24]
D. Moore, C. Shannon, G. M. Voelker, and S. Savage, “Internet quarantine: requirements for containing self-propagating code,” in Proceedings of the 22nd Annual Joint Conference on the IEEE Computer and Communications Societies (INFOCOM '03), San Francisco, Calif, USA, April 2003.