|
Physics 2013
QCD Topology at Finite Temperature: Statistical Mechanics of Selfdual DyonsDOI: 10.1103/PhysRevD.87.074009 Abstract: Topological phenomena in gauge theories have long been recognized as the driving force for chiral symmetry breaking and confinement. These phenomena can be conveniently investigated in the semi-classical picture, in which the topological charge is entirely carried by (anti-)self-dual gauge configurations. In such an approach, it has been shown that near the critical temperature, the non-zero expectation value of the Polyakov loop (holonomy) triggers the "Higgsing" of the color group, generating the splitting of instantons into $N_c$ self-dual dyons. A number of lattice simulations have provided some evidence for such dyons, and traced their relation with specific observables, such as the Dirac eigenvalue spectrum. In this work, we formulate a model, based on one-loop partition function and including Coulomb interaction, screening and fermion zee modes. We then perform the first numerical Monte Carlo simulations of a statistical ensemble of self-dual dyons,as a function of their density, quark mass and the number of flavors. We study different dyonic two-point correlation functions and we compute the Dirac spectrum, as a function of the ensemble diluteness and the number of quark flavors.
|