全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2012 

Universal Magnetic Properties of sp$^3$-type Defects in Covalently Functionalized Graphene

DOI: 10.1088/1367-2630/14/4/043022

Full-Text   Cite this paper   Add to My Lib

Abstract:

Using density-functional calculations, we study the effect of sp$^3$-type defects created by different covalent functionalizations on the electronic and magnetic properties of graphene. We find that the induced magnetic properties are {\it universal}, in the sense that they are largely independent on the particular adsorbates considered. When a weakly-polar single covalent bond is established with the layer, a local spin-moment of 1.0 $\mu_B$ always appears in graphene. This effect is similar to that of H adsorption, which saturates one $p_z$ orbital in the carbon layer. The magnetic couplings between the adsorbates show a strong dependence on the graphene sublattice of chemisorption. Molecules adsorbed at the same sublattice couple ferromagnetically, with an exchange interaction that decays very slowly with distance, while no magnetism is found for adsorbates at opposite sublattices. Similar magnetic properties are obtained if several $p_z$ orbitals are saturated simultaneously by the adsorption of a large molecule. These results might open new routes to engineer the magnetic properties of graphene derivatives by chemical means.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133