全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2013 

Terahertz emission from ZnGeP2: Phase-matching, intensity and length scalability

DOI: 10.1364/JOSAB.30.002882

Full-Text   Cite this paper   Add to My Lib

Abstract:

Collinear phase-matched optical rectification is studied in ZnGeP$_{2}$ pumped with near-infrared light. The pump-intensity dependence is presented for three crystal lengths (0.3, 1.0 and 3.0 mm) to determine the effects of linear optical absorption, nonlinear optical absorption and terahertz free-carrier absorption on the generation. Critical parameters such as the coherence length (for velocity matching), dispersion length (for linear pulse broadening) and nonlinear length (for self-phase modulation) are determined for this material. These parameters provide insight into the upper limit of pulse intensity and crystal length required to generate intense terahertz pulse without detriment to the pulse shape. It is found that for 1-mm thick ZnGeP$_{2}$(012), pumped at 1.28 micron with intensity of ~15 GW/cm2 will produce intense undistorted pulses, whereas longer crystals or larger intensities modify the pulse shape to varying degrees. Moreover, phase-matching dispersion maps are presented for the terahertz generation over a large tuning range (1.1-2.4 micron) in longer (3 mm) crystal, demonstrating the phase-matching bandwidth and phase mismatch that leads to fringing associated with multi-pulse interference. All observed results are simulated numerically showing good qualitative agreement.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133