全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2013 

One-dimensional helical transport in topological insulator nanowire interferometers

DOI: 10.1021/nl500822g

Full-Text   Cite this paper   Add to My Lib

Abstract:

The discovery of three-dimensional (3D) topological insulators opens a gateway to generate unusual phases and particles made of the helical surface electrons, proposing new applications using unusual spin nature. Demonstration of the helical electron transport is a crucial step to both physics and device applications of topological insulators. Topological insulator nanowires, of which spin-textured surface electrons form 1D band manipulated by enclosed magnetic flux, offer a unique nanoscale platform to realize quantum transport of spin-momentum locking nature. Here, we report an observation of a topologically protected 1D mode of surface electrons in topological insulator nanowires existing at only two values of half magnetic quantum flux ($\pm$h/2e) due to a spin Berry's phase ($\pi$). The helical 1D mode is robust against disorder but fragile against a perpendicular magnetic field breaking time-reversal-symmetry. This result demonstrates a device with robust and easily accessible 1D helical electronic states from 3D topological insulators, a unique nanoscale electronic system to study topological phenomena.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133