全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2013 

Extreme-Point Symmetric Mode Decomposition Method for Data Analysis

DOI: 10.1142/S1793536913500155

Full-Text   Cite this paper   Add to My Lib

Abstract:

An extreme-point symmetric mode decomposition (ESMD) method is proposed to improve the Hilbert-Huang Transform (HHT) through the following prospects: (1) The sifting process is implemented by the aid of 1, 2, 3 or more inner interpolating curves, which classifies the methods into ESMD_I, ESMD_II, ESMD_III, and so on; (2) The last residual is defined as an optimal curve possessing a certain number of extreme points, instead of general trend with at most one extreme point, which allows the optimal sifting times and decompositions; (3) The extreme-point symmetry is applied instead of the envelop symmetry; (4) The data-based direct interpolating approach is developed to compute the instantaneous frequency and amplitude. One advantage of the ESMD method is to determine an optimal global mean curve in an adaptive way which is better than the common least-square method and running-mean approach; another one is to determine the instantaneous frequency and amplitude in a direct way which is better than the Hilbert-spectrum method. These will improve the adaptive analysis of the data from atmospheric and oceanic sciences, informatics, economics, ecology, medicine, seismology, and so on.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133