全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2012 

Spin hydrodynamics in the S = 1/2 anisotropic Heisenberg chain

DOI: 10.1103/PhysRevB.86.115106

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study the finite-temperature dynamical spin susceptibility of the one-dimensional (generalized) anisotropic Heisenberg model within the hydrodynamic regime of small wave vectors and frequencies. Numerical results are analyzed using the memory function formalism with the central quantity being the spin-current decay rate gamma(q,omega). It is shown that in a generic nonintegrable model the decay rate is finite in the hydrodynamic limit, consistent with normal spin diffusion modes. On the other hand, in the gapless integrable model within the XY regime of anisotropy Delta < 1 the behavior is anomalous with vanishing gamma(q,omega=0) proportional to |q|, in agreement with dissipationless uniform transport. Furthermore, in the integrable system the finite-temperature q = 0 dynamical conductivity sigma(q=0,omega) reveals besides the dissipationless component a regular part with vanishing sigma_{reg}(q=0,omega to 0) to 0.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133