全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2012 

Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared - application to trace detection of H2O2

DOI: 10.1007/s00340-012-5024-7

Full-Text   Cite this paper   Add to My Lib

Abstract:

We demonstrate the first cavity-enhanced optical frequency comb spectroscopy in the mid-infrared wavelength region and report the sensitive real-time trace detection of hydrogen peroxide in the presence of a large amount of water. The experimental apparatus is based on a mid-infrared optical parametric oscillator synchronously pumped by a high power Yb:fiber laser, a high finesse broadband cavity, and a fast-scanning Fourier transform spectrometer with autobalancing detection. The comb spectrum with a bandwidth of 200 nm centered around 3.75 {\mu}m is simultaneously coupled to the cavity and both degrees of freedom of the comb, i.e., the repetition rate and carrier envelope offset frequency, are locked to the cavity to ensure stable transmission. The autobalancing detection scheme reduces the intensity noise by a factor of 300, and a sensitivity of 5.4 {\times} 10^-9 cm^-1 Hz^-1/2 with a resolution of 800 MHz is achieved (corresponding to 6.9 {\times} 10^-11 cm^-1 Hz^-1/2 per spectral element for 6000 resolved elements). This yields a noise equivalent detection limit for hydrogen peroxide of 8 parts-per-billion (ppb); in the presence of 2.8% of water the detection limit is 130 ppb. Spectra of acetylene, methane and nitrous oxide at atmospheric pressure are also presented, and a line shape model is developed to simulate the experimental data.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133