全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2012 

Effective permittivity of random plasmonic composites

DOI: 10.1364/JOSAB.29.001443

Full-Text   Cite this paper   Add to My Lib

Abstract:

An effective-medium theory (EMT) is developed to predict the effective permittivity \epsilon_eff of dense random dispersions of high optical-conductivity metals such as Ag, Au and Cu. Dependence of \epsilon_eff on the volume fraction \phi, a microstructure parameter \kappa related to the static structure factor and particle radius a is studied. In the electrostatic limit, the upper and lower bounds of \kappa correspond to Maxwell-Garnett and Bruggeman EMTs respectively. Finite size effects are significant when |\beta^2(ka/n)^3| becomes O(1) where \beta, k, and n denote the nanoparticle polarizability, wavenumber and matrix refractive index respectively. The coupling between the particle and effective medium results in a red-shift in the resonance peak, a non-linear dependence of \epsilon_eff on \phi, and Fano resonance in \epsilon_eff.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133