全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2013 

A multi-stable switchable metamaterial

DOI: 10.1038/ncomms4730

Full-Text   Cite this paper   Add to My Lib

Abstract:

The field of metamaterial research revolves around the idea of creating artificial media that interact with light in a way unknown from naturally occurring materials. This is commonly achieved by creating sub-wavelength lattices of electronic or plasmonic structures, so-called meta-atoms, that determine the interaction between light and metamaterial. One of the ultimate goals for these tailored media is the ability to control their properties in-situ which has led to a whole new branch of tunable and switchable metamaterials. Many of the present realizations rely on introducing microelectromechanical actuators or semiconductor elements into their meta-atom structures. Here we show that superconducting quantum interference devices (SQUIDs) can be used as fast, intrinsically switchable meta-atoms. We found that their intrinsic nonlinearity leads to simultaneously stable dynamic states, each of which is associated with a different value and sign of the magnetic susceptibility in the microwave domain. Moreover, we demonstrate that it is possible to switch between these states by applying a nanosecond long pulse in addition to the microwave probe signal. Apart from potential applications such as, for example, an all-optical metamaterial switch, these results suggest that multi-stability, which is a common feature in many nonlinear systems, can be utilized to create new types of meta-atoms.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133