全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2013 

Fall back accretion and energy injections in gamma-ray bursts

DOI: 10.1093/mnras/stu2336

Full-Text   Cite this paper   Add to My Lib

Abstract:

Intense flares that occur at late times relative to the prompt phase have been observed by the $Swift$ satellite in the X-ray afterglows of gamma-ray bursts (GRBs). Here, we present a detailed analysis on the fall back accretion process to explain the intense flare phase in the very early X-ray afterglow light curves. To reproduce the afterglow at late times, we resort to the external shock by engaging energy injections. By applying our model to GRBs 080810, 081028 and 091029, we show that their X-ray afterglow light curves can be reproduced well. We then apply our model to the ultra-long $Swift$ GRB 111209A, which is the longest burst ever observed. The very early X-ray afterglow of GRB 111209A showed many interesting features, such as a significant bump observed at around 2000 s after the $Swift$/BAT trigger. We assume two constant energy injection processes in our model. These can explain the observed plateau at X-ray wavelength in the relatively early stage ($8.0\times10^{3}$ s) and a second X-ray plateau and optical rebrightening at about $10^{5}$ s. Our analysis supports the scenario that a significant amount of material may fall back toward the central engine after the prompt phase, causing an enhanced and long lived mass accretion rate powering a Poynting-flux-dominated outflow.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133