|
Physics 1997
Quantum mechanical time-delay matrix in chaotic scatteringDOI: 10.1103/PhysRevLett.78.4737 Abstract: We calculate the probability distribution of the matrix Q = -i \hbar S^{-1} dS/dE for a chaotic system with scattering matrix S at energy E. The eigenvalues \tau_j of Q are the so-called proper delay times, introduced by E. P. Wigner and F. T. Smith to describe the time-dependence of a scattering process. The distribution of the inverse delay times turns out to be given by the Laguerre ensemble from random-matrix theory.
|