全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2014 

Nondiagonal Graphene Conductivity in the Presence of In-Plane Magnetic Fields

DOI: 10.1016/j.physleta.2015.03.034

Full-Text   Cite this paper   Add to My Lib

Abstract:

We study the electron/hole transport in puddle-disordered and rough graphene samples which are subject to in-plane magnetic fields. Previous treatments, mostly devoted to regimes where the electron/hole scattering wavelengths are larger than the surface height correlation length, are based on the use of transport equations with appropriate forms for the collision term. We point out in this work, as a counterpoint, that classical Lorentz force effects, which are expected to hold when the Fermi level is far enough away from the charge neutral point, can be heuristically assessed through disordered Boltzmann equations that contain magnetic-field dependent material derivatives, and keep the zero magnetic-field structure of the collision term. It turns out that the electric conductivity tensor gets a peculiar nondiagonal component, induced by the in-plane magnetic field that crosses the rough topography of the graphene sheet, even if the projected random transverse magnetic field vanishes in the mean. Numerical estimates of the transverse conductivities suggest that they are suitable of observation under conditions which are within the reach of up-to-date experimental methods.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133