全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
Physics  2013 

Ab initio calculations of indium arsenide in the wurtzite phase: structural, electronic and optical properties

DOI: 10.1088/2053-1591/1/1/015702

Full-Text   Cite this paper   Add to My Lib

Abstract:

Most III-V semiconductors, which acquire the zinc-blende phase as bulk materials, adopt the metastable wurtzite phase when grown in the form of nanowires. These are new semiconductors with new optical properties, in particular, a different electronic band gap when compared with that grown in the zinc-blende phase. The electronic gap of wurtzite InAs at the Gamma-point of the Brillouin zone (E0 gap) has been recently measured, E0 = 0.46 eV at low temperature. The electronic gap at the A point of the Brillouin zone (equivalent to the L point in the zinc-blende structure, E1) has also been obtained recently based on a resonant Raman scattering experiment. In this work, we calculate the band structure of InAs in the zinc-blende and wurtzite phases, using the full potential linearized augmented plane wave method, including spin-orbit interaction. The electronic band gap has been improved through the modified Becke-Johnson exchange-correlation potential. Both the E0 and E1 gaps agree very well with the experiment. From the calculations, a crystal field splitting of 0.122 eV and a spin-orbit splitting of 0.312 eV (the experimental value in zinc-blende InAs is 0.4 eV) has been obtained. Finally, we calculate the dielectric function of InAs in both the zinc-blende and wurtzite phases and a comparative discussion is given.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133