|
Physics 2013
Interplay of topology and geometry in frustrated 2d Heisenberg magnetsDOI: 10.1103/PhysRevB.90.094404 Abstract: We investigate two-dimensional frustrated Heisenberg magnets using non-perturbative renormalization group techniques. These magnets allow for point-like topological defects which are believed to unbind and drive either a crossover or a phase transition which separates a low temperature, spin-wave dominated regime from a high temperature regime where defects are abundant. Our approach can account for the crossover qualitatively and both the temperature dependence of the correlation length as well as a broad but well defined peak in the specific heat are reproduced. We find no signatures of a finite temperature transition and an accompanying diverging length scale. Our analysis is consistent with a rapid crossover driven by topological defects.
|