全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Organized Atrial Tachycardias after Atrial Fibrillation Ablation

DOI: 10.4061/2011/957538

Full-Text   Cite this paper   Add to My Lib

Abstract:

The efficacy of catheter-based ablation techniques to treat atrial fibrillation is limited not only by recurrences of this arrhythmia but also, and not less importantly, by new-onset organized atrial tachycardias. The incidence of such tachycardias depends on the type and duration of the baseline atrial fibrillation and specially on the ablation technique which was used during the index procedure. It has been repeatedly reported that the more extensive the left atrial surface ablated, the higher the incidence of organized atrial tachycardias. The exact origin of the pathologic substrate of these trachycardias is not fully understood and may result from the interaction between preexistent regions with abnormal electrical properties and the new ones resultant from radiofrequency delivery. From a clinical point of view these atrial tachycardias tend to remit after a variable time but in some cases are responsible for significant symptoms. A precise knowledge of the most frequent types of these arrhythmias, of their mechanisms and components is necessary for a thorough electrophysiologic characterization if a new ablation procedure is required. 1. Introduction Organized atrial tachycardias (AT) are a common problem after atrial fibrillation (AF) ablation (post-AF ablation AT—PAFAT). Since the first isolated case reports [1–5], several mechanisms [6] and different times of onset following the index procedure have been reported.A new ablation procedure often solves this arrhythmic problem [5, 7–14]. Nevertheless, this rhythm disorder merits a special attention for different reasons: (1) it has a high incidence and is often very symptomatic, (2) the complexity of the atrial arrhythmogenic substrate, which may be responsible for the frequent concurrence of several types of AT mechanisms in the same patient, (3) the variety of mapping and ablation approaches which have been reported and (4) the fact that PAFATs mechanisms may be linked to the mechanisms responsible for AF maintenance. This paper reviews the incidence, clinical presentation, mechanisms, electrophysiological characterization and ablation of PAFAT. Finally, a brief review of organized ATs presenting during the AF ablation procedure is also provided. 2. Incidence The real incidence of PAFAT cannot be easily extracted from published series because most of them either focused just on left [15–17] or macroreentrant (MR) AT [18, 19], or did not report the incidence of cavotricuspid isthmus-dependent (CTI) atrial flutter, which is responsible for 7–10% [20–22] of all PAFATs. This latter figure is even

References

[1]  H. Oral, C. Scharf, A. Chugh et al., “Catheter ablation for paroxysmal atrial fibrillation: segmental pulmonary vein ostial ablation versus left atrial ablation,” Circulation, vol. 108, no. 19, pp. 2355–2360, 2003.
[2]  H. H?issaguerre, P. Jais, M. Hocini, et al., “Macro-reentrant atrial flutter following ablation of pulmonary veins, tricuspid and mitral isthmuses,” Pacing and Clinical Electrophysiology, vol. 26, p. 970, 2003.
[3]  H. Oral, B. P. Knight, and F. Morady, “Left atrial flutter after segmental ostial radiofrequency catheter ablation for pulmonary vein isolation,” Pacing and Clinical Electrophysiology, vol. 26, no. 6, pp. 1417–1419, 2003.
[4]  L. Kanagaratnam, G. Tomassoni, R. Schweikert et al., “Empirical pulmonary vein isolation in patients with chronic atrial fibrillation using a three-dimensional nonfluoroscopic mapping system: long-term follow-up,” Pacing and Clinical Electrophysiology, vol. 24, no. 12, pp. 1774–1779, 2001.
[5]  J. Villacastín, N/ Pérez-Castellano, J Moreno, et al., “Left atrial flutter after radiofrequency cathter ablation of focal atrial fibrillation,” Journal of Cardiovascular Electrophysiology, vol. 14, no. 4, pp. 417–421, 2003.
[6]  N. Saoudi, F. Cosío, A. Waldo et al., “A classification of atrial flutter and regular atrial tachycardia according to electrophysiological mechanisms and anatomical bases: a statement from a joint expert group from the working group of arrhythmias of the European society of cardiology and the North American society of pacing and electrophysiology,” European Heart Journal, vol. 22, no. 14, pp. 1162–1182, 2001.
[7]  F. Anselme, “Macroreentrant atrial tachycardia: pathophysiological concepts,” Heart Rhythm, vol. 5, no. 6, pp. S18–S21, 2008.
[8]  J. P. Daubert, “Iatrogenic left atrial tachycardias: where are we?” Journal of the American College of Cardiology, vol. 50, no. 18, pp. 1788–1790, 2007.
[9]  E. P. Gerstenfeld and F. E. Marchlinski, “Mapping and ablation of left atrial tachycardias occurring after atrial fibrillation ablation,” Heart Rhythm, vol. 4, no. 3, pp. S65–S72, 2007.
[10]  K. Satomi, “Electrophysiological characteristics of atrial tachycardia after pulmonary vein isolation of atrial fibrillation,” Circulation Journal, vol. 74, no. 6, pp. 1051–1058, 2010.
[11]  J. V. Wylie and M. E. Josephson, “Atrial tachyarrhythmias after atrial fibrillation ablation procedures: trading one tachycardia for another?” Journal of Cardiovascular Electrophysiology, vol. 17, no. 4, pp. 374–376, 2006.
[12]  F. Morady, H. Oral, and A. Chugh, “Diagnosis and ablation of atypical atrial tachycardia and flutter complicating atrial fibrillation ablation,” Heart Rhythm, vol. 6, no. 8, pp. S29–S32, 2009.
[13]  G. D. Veenhuyzen, S. Knecht, M. D. O'Neill et al., “Atrial tachycardias encountered during and after catheter ablation for atrial fibrillation: part I: classification, incidence, management,” Pacing and Clinical Electrophysiology, vol. 32, no. 3, pp. 393–398, 2009.
[14]  S. Knecht, G. Veenhuyzen, M. O'Neill, M. Wright, I. Nault, et al., “Atrial tachycardias encountered during and after catheter ablation for atrial fibrillation. Part II: mapping and ablation,” Pacing and Clinical Electrophysiology, vol. 32, no. 3, pp. 528–538, 2009.
[15]  I. Deisenhofer, H. Estner, B. Zrenner et al., “Left atrial tachycardia after circumferential pulmonary vein ablation for atrial fibrillation: incidence, electrophysiological characteristics, and results of radiofrequency ablation,” Europace, vol. 8, no. 8, pp. 573–582, 2006.
[16]  C. E. Mesas, C. Pappone, C. C. E. Lang et al., “Left atrial tachycardia after circumferential pulmonary vein ablation for atrial fibrillation,” Journal of the American College of Cardiology, vol. 44, no. 5, pp. 1071–1079, 2004.
[17]  C. Pappone, F. Manguso, G. Vicedomini et al., “Prevention of iatrogenic atrial tachycardia after ablation of atrial fibrillation,” Circulation, vol. 110, no. 19, pp. 3036–3042, 2004.
[18]  A. Chugh, H. Oral, K. Lemola et al., “Prevalence, mechanism, and clinical significance of macrorreentrant atrial tachycardia during and following left atrial ablation for atrial fibrillation,” Heart Rhythm, vol. 2, no. 5, pp. 464–471, 2005.
[19]  E. G. Daoud, R. Weiss, R. Augostini, et al., “Proarrhythmia of circumferential left atrial lesions for management of atrial fibrillation,” Journal of Cardiovascular Electrophysiology, vol. 17, pp. 157–165, 2006.
[20]  R. Kobza, G. Hindricks, H. Tanner et al., “Late recurrent arrhythmias after ablation of atrial fibrillation: incidence, mechanisms, and treatment,” Heart Rhythm, vol. 1, no. 6, pp. 676–683, 2004.
[21]  S. Chae, H. Oral, E. Good et al., “Atrial tachycardia after circumferential pulmonary vein ablation of atrial fibrillation. Mechanistic insights, results of catheter ablation and risk factors for recurrence,” Journal of the American College of Cardiology, vol. 50, no. 18, pp. 1781–1787, 2007.
[22]  A. Chugh, R. Latchamsetty, H. Oral et al., “Characteristics of cavotricuspid isthmus-dependent atrial flutter after left atrial ablation of atrial fibrillation,” Circulation, vol. 113, no. 5, pp. 609–615, 2006.
[23]  F. Kilicaslan, A. Verma, H. Yamaji et al., “The need for atrial flutter ablation following pulmonary vein antrum isolation in patients with and without previous cardiac surgery,” Journal of the American College of Cardiology, vol. 45, no. 5, pp. 690–696, 2005.
[24]  M. R. Karch, B. Zrenner, I. Deisenhofer et al., “Freedom from atrial tachycarrhythmias after catheter ablation of atrial fibrillation. A randomized comparison between 2 current ablation strategies,” Circulation, vol. 111, no. 22, pp. 2875–2880, 2005.
[25]  C. Pappone, G. Oreto, S. Rosanio et al., “Atrial electroanatomic remodeling after circumferential radiofrequency vein ablation: efficacy of an anatomic approach in a large cohort of patients with atrial fibrillation,” Circulation, vol. 104, no. 21, pp. 2539–2544, 2001.
[26]  J.-I. Choi, H.-N. Pak, J. S. Park, et al., “Clinical significance of early recurrences of atrial tachycardia after atrial fibrillation ablation,” Journal of Cardiovascular Electrophysiology, vol. 21, no. 12, pp. 1331–1337, 2010.
[27]  R. Anousheh, N. S. Sawhney, M. Panutich, C. Tate, W. C. Chen, and G. K. Feld, “Effect of mitral isthmus block on development of atrial tachycardia following ablation for atrial fibrillation,” Pacing and Clinical Electrophysiology, vol. 33, no. 4, pp. 460–468, 2010.
[28]  S.-L. Chang, Y.-J. Lin, C.-T. Tai et al., “Induced atrial tachycardia after circumferential pulmonary vein isolation of paroxysmal atrial fibrillation: electrophysiological characteristics and impact of catheter ablation on the follow-up results,” Journal of Cardiovascular Electrophysiology, vol. 20, no. 4, pp. 388–394, 2009.
[29]  A. G. Brooks, M. K. Stiles, J. Laborderie et al., “Outcomes of long-standing persistent atrial fibrillation ablation: a systematic review,” Heart Rhythm, vol. 7, no. 6, pp. 835–846, 2010.
[30]  H. Oral, B. P. Knight, H. Tada et al., “Pulmonary vein isolation for paroxysmal and persistent atrial fibrillation,” Circulation, vol. 105, no. 9, pp. 1077–1081, 2002.
[31]  N. F. Marrouche, T. Dresing, C. Cole et al., “Circular mapping and ablation of the pulmonary vein for treatment of atrial fibrillation: impact of different catheter technologies,” Journal of the American College of Cardiology, vol. 40, no. 3, pp. 464–474, 2002.
[32]  A. Verma, N. F. Marrouche, and A. Natale, “Pulmonary vein antrum isolation: intracardiac echocardiography-guided technique,” Journal of Cardiovascular Electrophysiology, vol. 15, no. 11, pp. 1335–1340, 2004.
[33]  E. P. Gerstenfeld, D. J. Callans, S. Dixit et al., “Mechanism of organized left atrial tachycardias occurring after pulmonary vein ablation,” Circulation, vol. 110, no. 11, pp. 1351–1357, 2004.
[34]  J. Cummings, R. Schweikert, W. Saliba et al., “Left atrial flutter following pulmonary vein antrum isolation with radiofrequency energy: linear lesions or repeat isolation,” Journal of Cardiovascular Electrophysiology, vol. 16, no. 3, pp. 293–297, 2005.
[35]  S. Themistoclakis, R. A. Schweikert, W. I. Saliba et al., “Clinical predictors and relationship between early and late atrial tachyarrhythmias after pulmonary vein antrum isolation,” Heart Rhythm, vol. 5, no. 5, pp. 679–685, 2008.
[36]  K. Satomi, D. B?nsch, R. Tilz et al., “Left atrial and pulmonary vein macrorreentrant tachycardia associated with double conduction gaps: a novel type of man-made trachycardia after circumferential pulmonary vein isolation,” Heart Rhythm, vol. 5, no. 1, pp. 43–51, 2008.
[37]  D. Shah, H. Sunthorn, H. Burri et al., “Narrow, slow-conducting isthmus dependent left atrial reentry developing after ablation for atrial fibrillation: ECG characterization and elimination by focal RF ablation,” Journal of Cardiovascular Electrophysiology, vol. 17, no. 5, pp. 508–515, 2006.
[38]  F. Ouyang, M. Antz, S. Ernst, et al., “Recovered pulmonary vein conduction as a dominant factor for recurrent atrial tachycarrhythmias after complete circular isolation of the pulmonary veins. Lesson from double Lasso technique,” Circulation, vol. 111, pp. 127–135, 2005.
[39]  E. P. Gerstenfeld, D. J. Callans, W. Sauer, J. Jacobson, and F. E. Marchlinski, “Reentrant and nonreentrant focal left atrial tachycardias occur after pulmonary vein isolation,” Heart Rhythm, vol. 2, no. 11, pp. 1195–1202, 2005.
[40]  M. K. Stiles, B. John, C. X. Wong et al., “Paroxysmal lone atrial fibrillation is associated with an abnormal atrial substrate. Characterizing the ‘second factor’,” Journal of the American College of Cardiology, vol. 53, no. 14, pp. 1182–1191, 2009.
[41]  L.-W. Lo, C.-T. Tai, Y.-J. Lin et al., “Progressive remodeling of the atrial substrate—a novel finding from consecutive voltage mapping in patients with recurrence of atrial fibrillation after catheter ablation,” Journal of Cardiovascular Electrophysiology, vol. 18, no. 3, pp. 258–265, 2007.
[42]  M. Porter, W. Spear, J. G. Akar, et al., “Prospective study of atrial fibrillation termination during ablation guided by auutomated detection of fractionated electrograms,” Journal of Cardiovascular Electrophysiology, vol. 19, pp. 613–620, 2008.
[43]  N. Sahwney, R. Anousheh, W. Chen, and G. K. Feld, “Circumferential pulmonary vein ablation with additional linear ablation results in an increased incidence of left atrial flutter compared with segmental pulmonary vein isolation as an initial approach to ablation of paroxismal atrial fibrillation,” Circulation: Arrhythmia and Electrophysiology, vol. 3, pp. 243–248, 2010.
[44]  F. Gaita, D. Caponi, M. Scaglione, et al., “Long-term clinical results of 2 different ablation strategies in patients with paroxismal and persistent atrial fibrillation,” Circulation: Arrhythmia and Electrophysiology, vol. 1, pp. 269–275, 2008.
[45]  K. Nademanee, J. McKenzie, E. Kosar et al., “A new approach for catheter ablation of atrial fibrillation: mapping of the electrophysiologic substrate,” Journal of the American College of Cardiology, vol. 43, no. 11, pp. 2044–2053, 2004.
[46]  M. Ha?ssaguerre, P. Sanders, M. Hocini et al., “Catheter ablation of long-lasting persistent atrial fibrillation: critical structures for termination,” Journal of Cardiovascular Electrophysiology, vol. 16, no. 11, pp. 1125–1137, 2005.
[47]  H. Oral, A. Chugh, E. Good et al., “Radiofrequency catheter ablation of chronic atrial fibrillation guided by complex electrograms,” Circulation, vol. 115, no. 20, pp. 2606–2612, 2007.
[48]  H. Oral, A. Chugh, K. Yoshida et al., “A randomized assessment of the incremental role of ablation of complex fractionanted atrial electrograms after pulmonary vein isolation for long-lasting persistent atrial fibrillation,” Journal of the American College of Cardiology, vol. 53, no. 9, pp. 782–789, 2009.
[49]  H. Oral, A. Chugh, E. Good et al., “Randomized comparison of encircling and nonencircling left atrial ablation for chronic atrial fibrillation,” Heart Rhythm, vol. 2, no. 11, pp. 1165–1172, 2005.
[50]  H. L. Estner, G. Hessling, G. Ndrepepa et al., “Acute effects and long-term outcome of pulmonary vein isolation in combination with electrogram-guided substrate ablation for persistent atrial fibrillation,” American Journal of Cardiology, vol. 101, no. 3, pp. 332–337, 2008.
[51]  C. S. Elayi, A. Verma, L. Di Biase et al., “Ablation for longstanding atrial fibrillation: results from a randomized study comparing three different strategies,” Heart Rhythm, vol. 5, no. 12, pp. 1568–1664, 2008.
[52]  K. Nademanee, M. C. Schwab, E. M. Kosar et al., “Clinical outcomes of catheter substrate ablation for high-risk patients with atrial fibrillation,” Journal of the American College of Cardiology, vol. 51, no. 8, pp. 843–849, 2008.
[53]  G.-B. Nam, E.-S. Jin, H.-O Choi et al., “Mechanism of regular atrial tachyarrhythmias during combined pulmonary vein isolation and complex fractionated electrogram ablation in patients with atrial fibrillation,” Circulation Journal, vol. 74, no. 3, pp. 434–441, 2010.
[54]  T. Rostock, D. Steven, B. Hoffmann et al., “Chronic atrial fibrillation is a biatrial arrhythmia: data from catheter ablation of chronic atrial fibrillation aiming arrhythmia termination using a sequential ablation approach,” Circulation: Arrhythmia and Electrophysiology, vol. 1, no. 5, pp. 344–353, 2008.
[55]  Y. Takahashi, M. D. O'Neill, M. Hocini et al., “Characterization of electrograms assotiated with termination of chronic atrial fibrillation by catheter ablation,” Journal of the American College of Cardiology, vol. 51, no. 10, pp. 1003–1010, 2008.
[56]  M. Ha?ssaguerre, P. Sanders, M. Hocini et al., “Catheter ablation of long-lasting persistent atrial fibrillation: clinical outcome and mechanisms of susequent arrythmias,” Journal of Cardiovascular Electrophysiology, vol. 16, pp. 1138–1147, 2005.
[57]  T. Rostock, I. Drewitz, D. Steven et al., “Characterization, mapping, and catheter ablation of recurrent atrial tachycardias after stepwise ablation of long-lasting persistent atrial fibrillation,” Circulation: Arrhythmia and Electrophysiology, vol. 3, no. 2, pp. 160–169, 2010.
[58]  L. Zheng, Y. Yao, S. Zhang, et al., “Organized left atrial tachycarrhythmia during stepwise linear ablation for atrial fibrillation,” Journal of Cardiovascular Electrophysiology, vol. 20, pp. 499–506, 2009.
[59]  Y. Takahashi, A. Takahashi, S. Miyazaki, et al., “Electrophysiological characteristics of localized reentrant atrial tachycardia occurring after cathter ablation of long-lasting persistent atrial fibrillation,” Journal of Cardiovascular Electrophysiology, vol. 20, pp. 623–926, 2009.
[60]  A. Luik, M. Merkel, T. Riexinger, R. Wondraschek, and C. Schmitt, “Persistent atrial fibrillation converts to common type atrial flutter during CFAE ablation,” Pacing and Clinical Electrophysiology, vol. 33, no. 3, pp. 304–308, 2010.
[61]  P. Ja?s, S. Matsuo, S. Knecht et al., “A deductive mapping strategy for atrial tachycardia following atrial fibrillation ablation: importance of localized reentry,” Journal of Cardiovascular Electrophysiology, vol. 20, no. 5, pp. 480–491, 2009.
[62]  K. Yoshida, A. Chugh, M. Ulfarsson et al., “Relationship between the spectral characteristics of atrial fibrillation and atrial tachycardias that occur after catheter ablation of atrial fibrillation,” Heart Rhythm, vol. 6, no. 1, pp. 11–17, 2009.
[63]  E. Bertaglia, G. Stabile, G. Senatore et al., “Predictive value of early atrial tachyarrhythmias recurrence after circumferential anatomical pulmonary vein ablation,” Pacing and Clinical Electrophysiology, vol. 28, no. 5, pp. 366–371, 2005.
[64]  P. Ja?s, P. Sanders, L. F. Hsu et al., “Flutter localized to the anterior left atrium after catheter ablation of atrial fibrillation,” Journal of Cardiovascular Electrophysiology, vol. 17, no. 3, pp. 279–285, 2006.
[65]  F. J. Perez, M. A. Wood, and C. M. Schubert, “Effects of gap geometry on conduction through discontinuous radiofrequency lesions,” Circulation, vol. 113, no. 14, pp. 1723–1729, 2006.
[66]  M. Ha?ssaguerre, M. Hocini, P. Sanders et al., “Localized sources maintaining atrial fibrillation organized by prior ablation,” Circulation, vol. 113, no. 5, pp. 616–625, 2006.
[67]  S. Higa, C.-T. Tai, Y.-J. Lin et al., “Focal atrial tachycardia. New insight from noncontact mapping and catheter ablation,” Circulation, vol. 109, no. 1, pp. 84–91, 2004.
[68]  P. Sanders, M. Hocini, P. Ja?s et al., “Characterization of focal atrial tachycardia using high-density mapping,” Journal of the American College of Cardiology, vol. 46, no. 11, pp. 2088–2099, 2005.
[69]  R. R. Tilz, K. R. J. Chun, B. Schmidt, et al., “Catheter ablation of long-lasting persistent atrial fibrillation: a lesson from circumferential pulmonary vein isolation,” Journal of Cardiovascular Electrophysiology, vol. 21, pp. 1085–1093, 2010.
[70]  T. A. Irtel and E. Delacrétaz, “Intra-atrial reentrant tachycardia with ambiguous data from activation mapping: what to do next?” Heart Rhythm, vol. 2, no. 7, pp. 780–781, 2005.
[71]  G. D. Veenhuyzen and F. R. Quinn, “Mind the gap! An atrial tachycardia after catheter ablation for atrial fibrillation,” Journal of Cardiovascular Electrophysiology, vol. 20, no. 8, pp. 949–951, 2009.
[72]  A. M. Patel, A. D'Avila, P. Neuzil et al., “Atrial tachycardia after ablation of persistent atrial fibrillation. Identification of the critical isthmus with a combination of multielectrode activation mapiing and targeted entrainment mapping,” Circulation: Arrhythmia and Electrophysiology, vol. 1, no. 1, pp. 14–22, 2008.
[73]  J. L. Merino, “Slow conduction and flutter following atrial fibrillation ablation: proarrhythmia or unmasking effect of radiofrequency application?” Journal of Cardiovascular Electrophysiology, vol. 17, no. 5, pp. 516–519, 2006.
[74]  R. De Ponti, R. Verlato, E. Bertaglia et al., “Treatment of macro-re-entrant atrial tachycardia based on electroanatomic mapping: identification and ablation of the mid-diastolic isthmus,” Europace, vol. 9, no. 7, pp. 449–457, 2007.
[75]  C. Scharf, H. Oral, A. Chugh et al., “Acute effects of left atrial radiofrequency ablation on atrial fibrillation,” Journal of Cardiovascular Electrophysiology, vol. 15, no. 5, pp. 515–521, 2004.
[76]  K. Ellenbogen, B. S. Stambler, and M. A. Wood, “Atrial tachycardia,” in Cardiac Electrophysiology. From Cell to Bedside, D. P. Zipes and F. Jalife, Eds., pp. 589–603, Saunders Elsevier, Philadelphia, Pa, USA, 5th edition, 2009.
[77]  S. M. Markowitz, D. Nemirovksy, K. M. Stein et al., “Adenosine-insensitive focal atrial tachycardia. Evidence for de novo micro-re-entry in the human atrium,” Journal of the American College of Cardiology, vol. 49, no. 12, pp. 1324–1333, 2007.
[78]  F. Marchlinski, D. Callans, C. Gottlieb, E. Rodriguez, R. Coyne, and D. Kleinman, “Magnetic electroanatomical mapping for ablation of focal atrial tachycardias,” Pacing and Clinical Electrophysiology, vol. 21, no. 8, pp. 1621–1635, 1998.
[79]  U. Mohamed, A. C. Skanes, L. J. Gula et al., “A novel pacing maneuver to localize focal atrial tachycardia,” Journal of Cardiovascular Electrophysiology, vol. 18, no. 1, pp. 1–6, 2007.
[80]  J. M. Kalman, P. M. Kistler, and A. L. Waldo, “Localization of focal atrial tachycardias—back to the future… when (old) electrophysiologic first principles complement sophisticated technology,” Journal of Cardiovascular Electrophysiology, vol. 18, no. 1, pp. 7–8, 2007.
[81]  M. Ha?ssaguerre, M. Hocini, P. Sanders et al., “Localized sources maintaining atrial fibrillation organized by prior ablation,” Circulation, vol. 113, no. 5, pp. 616–625, 2006.
[82]  F. Atienza, J. Almendral, J. Moreno et al., “Activation of inward rectifier potassium channels accelerates atrial fibrilation in humans: evidence for a reentrant mechanism,” Circulation, vol. 114, no. 23, pp. 2434–2442, 2006.
[83]  S.-A. Chen, C.-E. Chiang, C.-J. Yang et al., “Sustained atrial tachycardia in adult patients: electrophysiological characteristics, pharmacological response, possible mechanisms and effectos of radiofrequency ablation,” Circulation, vol. 90, no. 3, pp. 1262–1278, 1994.
[84]  T. Datino, L. MacLe, X.-Y. Qi et al., “Mechanism by which adenosine restores conduction in dormant canine pulmonary veins,” Circulation, vol. 121, no. 8, pp. 963–972, 2010.
[85]  S. Ernst, F. Ouyang, F. L?ber, M. Antz, and K. H. Kuck, “Catheter-induced linear lesions in the left atrium in patients with atrial fibrillation. An electroanatomic study,” Journal of the American College of Cardiology, vol. 42, no. 7, pp. 1271–1282, 2003.
[86]  A. E. Becker, “Left atrial isthmus: anatomic aspectos relevant for linear catheter ablation procedures in humans,” Journal of Cardiovascular Electrophysiology, vol. 15, pp. 809–812, 2004.
[87]  T. Rostock, M. D. O'Neill, P. Sanders et al., “Characterization of conduction recovery across left atrial linear lesions in patients with paroxysmal and persistent atrial fibrillation,” Journal of Cardiovascular Electrophysiology, vol. 17, no. 10, pp. 1106–1111, 2006.
[88]  C. Eitel, G. Hindricks, P. Sommer et al., “Circumferential pulmonary vein isolation and linear left atrial ablation as a single-catheter technique to achieve bidirectional conduction block: the pace-and-ablate approach,” Heart Rhythm, vol. 7, no. 2, pp. 157–164, 2010.
[89]  T. W. Lim, C. H. Koay, R. McCall, V. A. See, D. L. Ross, and S. P. Thomas, “Atrial arrhythmias after single-ring isolation of the posterior left atrium and pulmonary veins for atrial fibrillation,” Circulation: Arrhythmia and Electrophysiology, vol. 1, no. 2, pp. 120–126, 2008.
[90]  J. E. Taclas, R. Nezafat, J. V. Wylie et al., “Relationship between intended sites of RF ablation and post-procedural scar in AF patients, using late gadolinium enhancement cardiovascular magnetic resonance,” Heart Rhythm, vol. 7, no. 4, pp. 489–496, 2010.
[91]  M. Del Greco, A. Cristoforetti, M. Marini, and F. Ravelli, “Image fusion shows the role of incomplete ablation lines in creating a substrate for left atrial flutter occurring after atrial fibrillation ablation,” Heart Rhythm, vol. 5, no. 1, pp. 163–164, 2008.
[92]  B. Schumacher, W. Jung, T. Lewalter, C. Wolpert, and B. Lüderitz, “Verification of linear lesions using a noncontact multielectrode array catheter versus conventional contact mapping techniques,” Journal of Cardiovascular Electrophysiology, vol. 10, no. 6, pp. 791–798, 1999.
[93]  K. Yano, K. Hirao, T. Horikawa, M. Tanaka, and M. Isobe, “Electrophysiology of a gap created on the canine atrium,” Journal of Interventional Cardiac Electrophysiology, vol. 17, no. 1, pp. 1–9, 2006.
[94]  S. P. Thomas, E. M. Wallace, and D. L. Ross, “The effect of a residual isthmus of surviving tissue on conduction after linear ablation in atrial myocardium,” Journal of Interventional Cardiac Electrophysiology, vol. 4, no. 1, pp. 273–281, 2000.
[95]  S. J. Melby, A. M. Lee, A. Zierer et al., “Atrial fibrillation propagates through gaps in ablation lines: implications for ablative treatment of atrial fibrillation,” Heart Rhythm, vol. 5, no. 9, pp. 1296–1301, 2008.
[96]  C.-T. Tai and S.-A. Chen, “Conduction barriers of atrial flutter: relation to the anatomy,” Pacing and Clinical Electrophysiology, vol. 31, no. 10, pp. 1335–1342, 2008.
[97]  P. Ja?s, D. C. Shah, M. Ha?ssaguerre et al., “Mapping and ablation of left atrial flutters,” Circulation, vol. 101, no. 25, pp. 2928–2934, 2000.
[98]  H. Nagakawa, S. Hayyar, K. Matsudaira, et al., “Characterization of reentrant circuit in macrorreentrant right atrial tachycardia after surgical repair of congenital heart disease. Isolated channels between scars allow “focal” ablation,” Circulation, vol. 103, pp. 699–709, 2001.
[99]  F. Ouyang, S. Ernst, T. Vogtmann et al., “Characterization of reentrant circuits in left atrial macrorreentrant tachycardia. Critical isthmus block can prevent atrial tachycardia recurrence,” Circulation, vol. 105, no. 16, pp. 1934–1942, 2002.
[100]  S. Tzeis, A. Luik, C. Jilek, et al., “The modified anterior line: an alternative linear lesion in preimitral flutter,” Journal of Cardiovascular Electrophysiology, vol. 21, pp. 665–670, 2010.
[101]  A. Pérez-Silva, J. L. Merino, I. Valverde, et al., “Ablación del flutter auricular perimitral mediante el bloqueo del istmo mitral superior,” Revista Espa?ola de Cardiología, vol. 63, supplement 3, p. 41, 2010.
[102]  P. Della Bella, A. Fraticelli, C. Tondo, S. Riva, G. Fassini, and C. Carbucicchio, “Atypical atrial flutter: clinical features, electrophysiological characteristics and response to radiofrequency catheter ablation,” Europace, vol. 4, no. 3, pp. 241–253, 2002.
[103]  N. F. Marrouche, A. Natale, O. M. Wazni et al., “Electrophysiology, anatomy and results of ablation,” Circulation, vol. 109, no. 20, pp. 2440–2447, 2004.
[104]  F. Bogun, B. Bender, Y.-G. Li, and S. H. Hohnloser, “Ablation of atypical atrial flutter guided by the use of concealed entrainment in patients without prior cardiac surgery,” Journal of Cardiovascular Electrophysiology, vol. 11, pp. 136–145, 2000.
[105]  E. Delacretaz, L. I. Ganz, K. Soejima, et al., “Multiple atrial macro-re-entry circuits in adults with repaired congenital heart disease: entrainment mapping combined with three-dimensional electroanatomic mapping,” Journal of the American College of Cardiology, vol. 37, pp. 1665–1676, 2001.
[106]  A. Frustaci, C. Chimenti, F. Bellocci, E. Morgante, M. A. Russo, and A. Maseri, “Histological substrate of atrial biopsies in patients with lone atrial fibrillation,” Circulation, vol. 96, no. 4, pp. 1180–1184, 1997.
[107]  M. K. Stiles, B. John, C. X. Wong et al., “Paroxysmal lone atrial fibrillation is associated with an abnormal atrial substrate,” Journal of the American College of Cardiology, vol. 53, no. 14, pp. 1182–1191, 2009.
[108]  J. A. Cabrera, S. Y. Ho, V. Climent, and D. Sánchez-Quintana, “The architecture of the left lateral atrial wall: a particular anatomic region with implications for ablation of atrial fibrillation,” European Heart Journal, vol. 29, no. 3, pp. 356–362, 2008.
[109]  S. Moreno-Reviriego, J. L. Merino, I. Valverde, et al., “Cicatrices en la aurícula izquierda en pacientes con fibrilación auricular: prevalencia y posible relación con el sustrato de sostenimiento arrítmico,” Revista Espa?ola de Cardiología, vol. 63, supplement 3, p. 127, 2010.
[110]  A. Verma, O. M. Wazni, N. F. Marrouche, et al., “Pre-existent left atrial scarring in patients undergoing pulmonary vein antrum isolation: an independent predictor of procedural failure,” Journal of the American College of Cardiology, vol. 45, pp. 285–292, 2005.
[111]  Y. J. Lin, S. Higa, C.-T. Tai et al., “Role of the right atrial substrate in different types of atrial arrhythmias,” Heart Rhythm, vol. 6, no. 5, pp. 592–598, 2009.
[112]  F. J. Chorro, J. Sanchís, L. Such et al., “Acute effects of radiofrequency ablation upon atrial conduction in proximity to the lesion site,” Pacing and Clinical Electrophysiology, vol. 21, pp. 659–668, 1998.
[113]  L. Di Biase, D. Burkhard, P. Mohanty, et al., “Left atrial appendage: an urecognized trigger site of atrial fibrillation,” Circulation, vol. 122, pp. 109–118, 2010.
[114]  K. R. Chun, D. Bansch, S. Ernst, et al., “Pulmonary vein conduction is the major finding in patients with atrial tachyarrythmias after intraoperative Maze ablation,” Journal of Cardiovascular Electrophysiology, vol. 18, pp. 358–363, 2007.
[115]  R. W. Sy, L. J. Gula, P. Leong-Sit et al., “Complete antral encirclement is not required for pulmonary vein isolation,” Heart Rhythm, vol. 8, no. 1, pp. 16–22, 2011.
[116]  O. Wazni, N. F. Marrouche, D. O. Martin et al., “Randomized study comparing combined pulmonary vein–left atrial junction disconnection and cavotricuspid isthmus ablation versus pulmonary vein–left atrial junction disconnection alone in patients presenting with typical atrial flutter and atrial fibrillation,” Circulation, vol. 108, no. 20, pp. 2479–2483, 2003.
[117]  A. L. Waldo and G. K. Feld, “AInter-relationships of atrial fibrillation and atrial flutter,” Journal of the American College of Cardiology, vol. 51, pp. 779–786, 2008.
[118]  Y. Gong, F. Xie, K. M. Stein et al., “Mechanism underlying initiation of paroxysmal atrial flutter/atrial fibrillation by ectopic foci. A simulation study,” Circulation, vol. 115, no. 16, pp. 2094–2102, 2007.
[119]  Y. Khaykin, A. Skanes, J. Champagne, et al., “A randomized controlled trial of the efficacy and safety of electroanatomic circumferential pulmonary vein ablation supplemented by ablation of complex fractionated atrial electrograms versus potential-guided pulmonary vein antrum isolation guided by intracardiac ultrasound,” Circulation: Arrhythmia and Electrophysiology, vol. 2, pp. 481–487, 2009.
[120]  Y. J. Lin, H. M. Tsao, S. L. Chang, et al., “The distance between the vein and lessions predicts the requirement of carina ablation in circumferential pulmonary vein isolation,” Europace, vol. 13, pp. 376–382, 2011.
[121]  L. Di Biase, S. Conti, P. Mohanty, et al., “General anesthesia reduces the prevalence of pulmonary vein reconnection during repeat ablation when compares with conscious sedation: results from a randomized study,” Heart Rhythm Journal, vol. 8, pp. 368–372, 2011.
[122]  C. Pappone, G. Vicedomini, F. Manguso et al., “Robotic magnetic navigation for atrial fibrillation ablation,” Journal of the American College of Cardiology, vol. 47, no. 7, pp. 1390–1400, 2006.
[123]  E. S. Gang, J. Merino, and B. L. Nguyen, “Remote navigation for ablation procedures,” European Cardiology, vol. 6, pp. 50–56, 2010.
[124]  C. S. Elayi, L. Di Biase, C. Barrett et al., “Atrial fibrillation termination as a procedural endpoint during ablation in long-standing persistent atrial fibrillation,” Heart Rhythm, vol. 7, no. 9, pp. 1216–1223, 2010.
[125]  C. Schmit, H. Estner, B. Hecher, et al., “Radiofrequency ablation o complex fractionated atrial electrograms (CFAE): preferential sites of acute termination and regularization in paroxysmal and persistent atrial fibrillation,” Journal of Cardiovascular Electrophysiology, vol. 18, pp. 1039–1046, 2007.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133