全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Nonlinear Programming and Artificial Neural Network Approach for Optimizing the Performance of a Job Dispatching Rule in a Wafer Fabrication Factory

DOI: 10.1155/2012/471973

Full-Text   Cite this paper   Add to My Lib

Abstract:

A nonlinear programming and artificial neural network approach is presented in this study to optimize the performance of a job dispatching rule in a wafer fabrication factory. The proposed methodology fuses two existing rules and constructs a nonlinear programming model to choose the best values of parameters in the two rules by dynamically maximizing the standard deviation of the slack, which has been shown to benefit scheduling performance by several studies. In addition, a more effective approach is also applied to estimate the remaining cycle time of a job, which is empirically shown to be conducive to the scheduling performance. The efficacy of the proposed methodology was validated with a simulated case; evidence was found to support its effectiveness. We also suggested several directions in which it can be exploited in the future. 1. Introduction This study attempts to optimize the performance of a job dispatching rule in a wafer fabrication factory. The production equation required by a wafer fabrication factory is very expensive and must be fully utilized. For this purpose, to ensure that the capacity does not substantially exceed the demand is a perquisite. Subsequently, how to plan the use of the existing capacity to shorten the cycle time and maximize the turnover rate is an important goal. In this regard, scheduling is undoubtedly a very useful tool. However, some studies [1–4] noted that job dispatching is very difficult task in a semiconductor manufacturing factory. Theoretically, it is an NP-hard problem. In practice, many semiconductor manufacturing factories suffer from lengthy cycle times and are not able to improve on their delivery promises to their customers. Semiconductor manufacturing can be divided into four stages: wafer fabrication, wafer probing, packaging, and final testing. The most important stage is wafer fabrication. It is also the most time-consuming one. In this study, we investigated the job dispatching for this stage. This field includes many different methods, including dispatching rules, heuristics, data-mining-based approaches [5, 6], agent technologies [5, 7–9], and simulation. Among them, dispatching rules (e.g., first-in first out (FIFO), earliest due date (EDD), least slack (LS), shortest processing time (SPT), shortest remaining processing time (SRPT), critical ratio (CR), the fluctuation smoothing rule for the mean cycle time (FSMCT), and the fluctuation smoothing rule for cycle time variation (FSVCT), FIFO+, SRPT+, and SRPT++) all have received a lot of attention over the last few years [5–7] and are the

References

[1]  C. N. Wang and C. H. Wang, “A simulated model for cycle time reduction by acquiring optimal lot size in semiconductor manufacturing,” International Journal of Advanced Manufacturing Technology, vol. 34, no. 9-10, pp. 1008–1015, 2007.
[2]  T. Chen and Y. C. Lin, “A fuzzy-neural fluctuation smoothing rule for scheduling jobs with various priorities in a miconductor manufacturing factory,” International Journal of Uncertainty, Fuzziness and Knowlege-Based Systems, vol. 17, no. 3, pp. 397–417, 2009.
[3]  T. Chen and Y. C. Wang, “A nonlinear scheduling rule incorporating fuzzy-neural remaining cycle time estimator for scheduling a semiconductor manufacturing factory-a simulation study,” International Journal of Advanced Manufacturing Technology, vol. 45, no. 1-2, pp. 110–121, 2009.
[4]  T. Chen, “Optimized fuzzy-neuro system for scheduling wafer fabrication,” Journal of Scientific and Industrial Research, vol. 68, no. 8, pp. 680–685, 2009.
[5]  D. A. Koonce and S. C. Tsai, “Using data mining to find patterns in genetic algorithm solutions to a job shop schedule,” Computers and Industrial Engineering, vol. 38, no. 3, pp. 361–374, 2000.
[6]  B. W. Hsieh, C. H. Chen, and S. C. Chang, “Scheduling semiconductor wafer fabrication by using ordinal optimization-based simulation,” IEEE Transactions on Robotics and Automation, vol. 17, no. 5, pp. 599–608, 2001.
[7]  H. J. Yoon and W. Shen, “A multiagent-based decision-making system for semiconductor wafer fabrication with hard temporal constraints,” IEEE Transactions on Semiconductor Manufacturing, vol. 21, no. 1, pp. 83–91, 2008.
[8]  Y. Harrath, B. Chebel-Morello, and N. Zerhouni, “A genetic algorithm and data mining based meta-heuristic for job shop scheduling problem,” in Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, pp. 280–285, October 2002.
[9]  K. Sourirajan and R. Uzsoy, “Hybrid decomposition heuristics for solving large-scale scheduling problems in semiconductor wafer fabrication,” Journal of Scheduling, vol. 10, no. 1, pp. 41–65, 2007.
[10]  S. C. H. Lu, D. Ramaswamy, and P. R. Kumar, “Efficient scheduling policies to reduce mean and variance of cycle-time in semiconductor manufacturing plants,” IEEE Transactions on Semiconductor Manufacturing, vol. 7, no. 3, pp. 374–388, 1994.
[11]  K. Altendorfer, B. Kabelka, and W. St?cher, “A new dispatching rule for optimizing machine utilization at a semiconductor test field,” in Proceedings of the IEEE/SEMI Advanced Semiconductor Manufacturing Conference (ASMC '07), pp. 188–193, June 2007.
[12]  H. Zhang, Z. Jiang, and C. Guo, “Simulation-based optimization of dispatching rules for semiconductor wafer fabrication system scheduling by the response surface methodology,” International Journal of Advanced Manufacturing Technology, vol. 41, no. 1-2, pp. 110–121, 2009.
[13]  T. Chen, “Fuzzy-neural-network-based fluctuation smoothing rule for reducing the cycle times of jobs with various priorities in a wafer fabrication plant: a simulation study,” Proceedings of the Institution of Mechanical Engineers Part B, Journal of Engineering Manufacture, vol. 223, no. 8, pp. 1033–1043, 2009.
[14]  T. Chen, “A tailored non-linear fluctuation smoothing rule for semiconductor manufacturing factory scheduling,” Proceedings of the Institution of Mechanical Engineers Part I, Journal of Systems and Control Engineering, vol. 223, no. 2, pp. 149–160, 2009.
[15]  T. Chen, “Intelligent scheduling approaches for a wafer fabrication factory,” Journal of Intelligent Manufacturing, vol. 23, no. 3, pp. 897–911, 2012.
[16]  T. Chen and Y. C. Wang, “A bi-criteria nonlinear fluctuation smoothing rule incorporating the SOM-FBPN remaining cycle time estimator for scheduling a wafer fab—a simulation study,” International Journal of Advanced Manufacturing Technology, vol. 49, no. 5–8, pp. 709–721, 2010.
[17]  T. Chen, Y.-C. Wang, and Y.-C. Lin, “A bi-criteria four-factor fluctuation smoothing rule for scheduling jobs in a wafer fabrication factory,” International Journal of Innovative Computing, Information and Control, vol. 6, pp. 4289–4303, 2010.
[18]  T. Chen, “Dynamic fuzzy-neural fluctuation smoothing rule for jobs scheduling in a wafer fabrication factory,” Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, vol. 223, no. 8, pp. 1081–1094, 2009.
[19]  T. Chen, “An optimized tailored nonlinear fluctuation smoothing rule for scheduling a semiconductor manufacturing factory,” Computers and Industrial Engineering, vol. 58, no. 2, pp. 317–325, 2010.
[20]  T. Chen, Y. C. Wang, and H. C. Wu, “A fuzzy-neural approach for remaining cycle time estimation in a semiconductor manufacturing factory—a simulation study,” International Journal of Innovative Computing, Information and Control, vol. 5, no. 8, pp. 2125–2139, 2009.
[21]  Y. C. Wang, T. Chen, and C. W. Lin, “A slack-diversifying nonlinear fluctuation smoothing rule for job dispatching in a wafer fabrication factory,” Robotics & Computer Integrated Manufacturing. In press.
[22]  T. Chen and T. Wang, “Enhancing scheduling performance for a wafer fabrication factory: the bi-objective slack-diversifying nonlinear fluctuation-smoothing rule,” Computational Intelligence and Neuroscience. In press.
[23]  T. Chen and M. Huang, “A fuzzy-neural slack-diversifying NFS rule for job dispatching in a wafer fabrication factory,” ICIC Express Letters, vol. 6, no. 9, pp. 2243–2248, 2012.
[24]  X. L. Xie and G. Beni, “A validity measure for fuzzy clustering,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 13, no. 8, pp. 841–847, 1991.
[25]  T. Chen and Y. C. Lin, “A fuzzy back propagation network ensemble with example classification for lot output time prediction in a wafer fab,” Applied Soft Computing Journal, vol. 9, no. 2, pp. 658–666, 2009.
[26]  T. Chen, Y. C. Wang, and H. R. Tsai, “Lot cycle time prediction in a ramping-up semiconductor manufacturing factory with a SOM-FBPN-ensemble approach with multiple buckets and partial normalization,” International Journal of Advanced Manufacturing Technology, vol. 42, no. 11-12, pp. 1206–1216, 2009.
[27]  T. Nakata, K. Matsui, Y. Miyake, and K. Nishioka, “Dynamic bottleneck control in wide variety production factory,” IEEE Transactions on Semiconductor Manufacturing, vol. 12, no. 3, pp. 273–280, 1999.
[28]  T. Chen, “Job cycle time estimation in a wafer fabrication factory with a bi-directional classifying fuzzy-neural approach,” International Journal of Advanced Manufacturing Technology, vol. 56, pp. 1007–1018, 2011.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133