The track of developing Economic Order Quantity (EOQ) models with uncertainties described as fuzzy numbers has been very lucrative. In this paper, a fuzzy Economic Production Quantity (EPQ) model is developed to address a specific problem in a theoretical setting. Not only is the production time finite, but also backorders are allowed. The uncertainties, in the industrial context, come from the fact that the production availability is uncertain as well as the demand. These uncertainties will be handled with fuzzy numbers and the analytical solution to the optimization problem will be obtained. A theoretical example from the process industry is also given to illustrate the new model. 1. Introduction The earliest models of batch-production were derived from the basic Economic Order Quantity (EOQ) model in the early 20th century. During this time, mathematical methods started emerging to optimize the size of the inventory and the orders [1], and since then, there have been an increasing number of contributions that complement the basic model in different ways. One of them is the extension of finite production rate and another one is when backordering is allowed. The EOQ models are most often used in a continuous-review setting and it is assumed that the inventory can be monitored every moment in time. Decision making under uncertainty is nothing new. In Liberatore [2], an EOQ model with backorders is derived through probabilistic means. However, the uncertainties in many supply chains today are inherent fuzzy [3]. This comes from the fact that there are seldom statistical data to support the calculations, but the uncertainty distributions have to be based on expert opinions only. This is typically the case for new products, and other products with very large seasonal variations, for example. In these cases it is often possible to use fuzzy numbers instead of probabilistic approaches [4, 5]. There are many research contributions in this line of research. For instance, Ouyang et al. [6, 7] allowed the lead times to be decision variables. Salameh and Jaber [8] introduced a model that captured also the defective rate of the goods. Chang [9] worked out some fuzzy modifications of this model. A good review of this research track is found in [10]. Another set of results in this line of research is found in Jaber et al. [11], and Khan et al. [12], where the learning aspect of the inspection of quality was taken explicitly into consideration and Khan et al. [13], where the inspection errors (as well as the imperfect items) also were modeled. There is also a track
References
[1]
F. W. Harris, “How many parts to make at once,” The Magazine of Management, vol. 10, pp. 135–136, 1913.
[2]
M. J. Liberatore, “The EOQ model under stochastic lead time,” Operations Research, vol. 27, pp. 391–396, 1979.
[3]
A. L. Guiffrida, “Fuzzy inventory models,” in Inventory Management: Non-Classical Views, M. Y. Jaber, Ed., chapter 8, pp. 173–198, CRC Press, Boca Raton, Fla, USA, 2009.
[4]
L. A. Zadeh, “Fuzzy sets,” Information and Control, vol. 8, no. 3, pp. 338–353, 1965.
[5]
L. A. Zadeh, “Outline of a new approach to the analysis of complex systems and decision processes,” IEEE Transactions on Systems, Man and Cybernetics, vol. 3, no. 1, pp. 28–44, 1973.
[6]
L. Y. Ouyang and K. S. Wu, “A minimax distribution free procedure for mixed inventory model with variable lead time,” International Journal of Production Economics, vol. 56-57, pp. 511–516, 1998.
[7]
L. Y. Ouyang and J. S. Yao, “A minimax distribution free procedure for mixed inventory model involving variable lead time with fuzzy demand,” Computers and Operations Research, vol. 29, no. 5, pp. 471–487, 2001.
[8]
M. K. Salameh and M. Y. Jaber, “Economic production quantity model for items with imperfect quality,” International Journal of Production Economics, vol. 64, no. 1, pp. 59–64, 2000.
[9]
H. C. Chang, “An application of fuzzy sets theory to the EOQ model with imperfect quality items,” Computers and Operations Research, vol. 31, no. 12, pp. 2079–2092, 2004.
[10]
M. Khan, M. Y. Jaber, A. L. Guiffrida, and S. Zolfaghari, “A review of the extensions of a modified EOQ model for imperfect quality items,” International Journal of Production Economics, vol. 132, no. 1, pp. 1–12, 2011.
[11]
M. Y. Jaber, M. Bonney, and I. Moualek, “An economic order quantity model for an imperfect production process with entropy cost,” International Journal of Production Economics, vol. 118, no. 1, pp. 26–33, 2009.
[12]
M. Khan, M. Y. Jaber, and M. I. M. Wahab, “Economic order quantity model for items with imperfect quality with learning in inspection,” International Journal of Production Economics, vol. 124, no. 1, pp. 87–96, 2010.
[13]
M. Khan, M. Y. Jaber, and M. Bonney, “An economic order quantity (EOQ) for items with imperfect quality and inspection errors,” International Journal of Production Economics, vol. 199, no. 1, pp. 113–118, 2010.
[14]
C. Carlsson and R. Fuller, “Soft computing and the Bullwhip effect,” Economics and Complexity, vol. 2, no. 3, pp. 1–26, 1999.
[15]
K. M. Bj?rk and C. Carlsson, “The outcome of imprecise lead times on the distributors,” in Proceedings of the 38th Annual Hawaii International Conference on System Sciences (HICSS '05), pp. 81–90, 2005, Track 3.
[16]
K. M. Bj?rk, “An analytical solution to a fuzzy economic order quantity problem,” International Journal of Approximate Reasoning, vol. 50, no. 3, pp. 485–493, 2009.
[17]
S. C. Chang, J. S. Yao, and H. M. Lee, “Economic reorder point for fuzzy backorder quantity,” European Journal of Operational Research, vol. 109, pp. 183–202, 1998.
[18]
K.-M. Bj?rk, “A fuzzy economic production quantity problem with back orders,” in Proceedings of the World Conference on Soft Computing (WConSC '11), 2011.
[19]
J. S. Yao, L. Y. Ouyang, and H. C. Chang, “Models for a fuzzy inventory of two replaceable merchandises without backorder based on the signed distance of fuzzy sets,” European Journal of Operational Research, vol. 150, no. 3, pp. 601–616, 2003.
[20]
J. S. Yao and J. Chiang, “Inventory without backorder with fuzzy total cost and fuzzy storing cost defuzzified by centroid and signed distance,” European Journal of Operational Research, vol. 148, no. 2, pp. 401–409, 2003.
[21]
K.-M. Bj?rk, “A multi-item fuzzy economic production quantity problem with a finite production rate,” International Journal of Production Economics, vol. 135, no. 2, pp. 702–707, 2012.
[22]
L. E. Cárdenas-Barrón, “The economic production quantity (EPQ) with shortage derived algebraically,” International Journal of Production Economics, vol. 70, no. 3, pp. 289–292, 2001.
[23]
L. E. Cárdenas-Barrón, “An easy method to derive EOQ and EPQ inventory models with backorders,” Computers and Mathematics with Applications, vol. 59, no. 2, pp. 948–952, 2010.
[24]
L. E. Cárdenas-Barrón, “The derivation of EOQ/EPQ inventory models with two backorders costs using analytic geometry and algebra,” Applied Mathematical Modelling, vol. 35, no. 5, pp. 2394–2407, 2011.
[25]
N. Kazemi, E. Ehsani, and M. Y. Jaber, “An inventory model with backorders with fuzzy parameters and decision variables,” International Journal of Approximate Reasoning, vol. 51, no. 8, pp. 964–972, 2010.
[26]
J. S. Yao and K. Wu, “Ranking fuzzy numbers based on decomposition principle and signed distance,” Fuzzy Sets and Systems, vol. 116, pp. 275–288, 2000.