全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2013 

格陵兰冰盖表面消融研究进展

DOI: 10.7522/j.issn.1000-0240.2013.0012, PP. 101-109

Keywords: 冰盖表面消融,冰盖物质平衡,冰盖表面湖,冰面径流,格陵兰

Full-Text   Cite this paper   Add to My Lib

Abstract:

冰盖表面消融是格陵兰冰盖物质平衡的重要组成部分,已成为近年来格陵兰冰盖研究的热点.格陵兰冰盖表面消融研究的关键在于理解冰盖融水的产生、运移和释放等水文过程,需要解决如下关键科学问题1)冰盖表面产生了多少融水;2)冰盖表面水文系统具有什么特征;3)冰盖表面融水如何影响冰盖运动;围绕这些科学问题,总结了格陵兰冰盖表面消融的研究进展.冰盖表面消融建模、冰盖表面湖的信息提取与面积特征变化、深度反演与体积量算等是目前研究冰盖表面融水量的主要途径,冰盖表面湖、冰盖表面径流、锅穴与冰裂隙等表面水文要素的空间分布规律研究则可用于揭示冰盖表面水文系统特征,冰盖表面融水与冰盖运动速率的关系、表面融水进入冰盖内部与底部的水文过程是目前揭示表面融水如何影响冰盖运动的主要手段.

References

[1]  Gregory J M, Huybrechts P. Ice-sheet contributions to future sea-level change [J]. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 2006, 364(1844): 1709-1732.
[2]  Dowdeswell J A. The Greenland Ice Sheet and global sea-level rise [J]. Science, 2006, 311: 963-964.
[3]  Vaughan D G, Arthern R. Why is it hard to predict the future of ice sheets? [J]. Science, 2007, 315(5818): 1503-1504.
[4]  Rignot E, Thomas R H. Mass balance of Polar ice sheets [J]. Science, 2002, 297: 1502-1506.
[5]  Nicholls R J, Cazenave A. Sea-level rise and its impact on coastal zones [J]. Science, 2010, 328: 1517-1520.
[6]  Howat I M, Joughin I, Tulaczyk S, et al. Rapid retreat and acceleration of Helheim Glacier, east Greenland [J]. Geophysical Research Letters, 2005, 32 (22), DOI: 10.1029/2005 GL024737.
[7]  Joughin I, Howat I M, Fahnestock M, et al. Continued evolution of Jakobshavn Isbrae following its rapid speedup [J]. Journal of Geophysical Research, 2008, 113 (F4), DOI: 10.1029/2008JF001023.
[8]  Thomas R, Frederick E, Krabill W, et al. Recent changes on Greenland outlet glaciers [J]. Journal of Glaciology, 2009, 55 (189): 147-162.
[9]  IPCC. Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [M]. Cambridge: Cambridge University Press, 2007.
[10]  Alley R B, Fahnestock M, Joughin I. Understanding glacier flow in changing times [J]. Science, 2008, 322: 1061-1062.
[11]  van den Broeke M, Bamber J, Ettema J, et al. Partitioning recent Greenland mass loss [J]. Science, 2009, 326: 984-986.
[12]  Mernild S H, Liston G E, Hiemstra C A, et al. Greenland Ice Sheet surface mass-balance modelling and freshwater flux for 2007, and in a 1995-2007 perspective [J]. Hydrological Processes, 2009, 23 (17): 2470-2484.
[13]  Parizek B R, Alley R B. Implications of increased Greenland surface melt under global-warming scenarios: ice-sheet simulations [J]. Quaternary Science Reviews, 2004, 23 (9-10): 1013-1027.
[14]  Luthcke S B, Zwally H J, Abdalati W, et al. Recent Greenland ice mass loss by drainage system from satellite gravity observations [J]. Science, 2006, 314: 1286-1289.
[15]  Schoof C. Ice-sheet acceleration driven by melt supply variability [J]. Nature, 2010, 468: 803-806.
[16]  Sundal A V, Shepherd A, Nienow P, et al. Melt-induced speed-up of Greenland ice sheet offset by efficient subglacial drainage [J]. Nature, 2011, 469: 521-524.
[17]  Pfeffer W T, Meier M F, Illangasekare T H. Retention of Greenland runoff by refreezing: Implications for projected future sea level change[J]. Journal of Geophysical Research: Oceans(1978-2012), 1991, 96 (C12): 22117-22124.
[18]  Janssens I, Huybrechts P. The treatment of meltwater retention in mass-balance parameterizations of the Greenland ice sheet [J]. Annals of Glaciology, 2000, 31: 133-140.
[19]  van de Wal R S W, Boot W, van den Broeke M R, et al. Large and rapid melt-induced velocity changes in the ablation zone of the Greenland Ice Sheet [J]. Science, 2008, 321 (5885): 111-113.
[20]  Zwally H J, Abdalati W, Herring T, et al. Surface melt-induced acceleration of Greenland ice-sheet flow [J]. Science, 2002, 297 (5579): 218-222.
[21]  Hock R. Glacier melt: a review of processes and their modelling [J]. Progress in Physical Geography, 2005, 29 (3): 362-391.
[22]  Qiao Chengjun, He Xiaobo, Ye Baisheng. Study of the degree-day factors for snow and ice on the Dongkemadi Glacier, Tanggula [J]. Journal of Glaciology and Geocryology, 2010, 32(2): 257-264. [谯程骏, 何晓波, 叶柏生. 唐古拉山冬克玛底冰川雪冰度日因子研究[J]. 冰川冻土, 2010, 32(2): 257-264.]
[23]  Cui Yuhuan, Ye Baisheng, Wang Jie, et al. Analysis of the spatial-temporal variations of the positive degree-day factors on the Glacier No.1 at the headwaters of the Vrümqi River [J]. Journal of Glaciology and Geocryology, 2010, 32 (2): 265-274. [崔玉环, 叶柏生, 王杰, 等. 乌鲁木齐河源1号冰川度日因子时空变化特征[J]. 冰川冻土, 2010, 32 (2): 265-274.]
[24]  Wu Qianru, Kang Shichang, Gao Tanguang, et al. The characteristics of the positive degree-day factors of the Zhadang Glacier on the Nyainqêntanglha Range of Tibetan Plateau, and its application [J]. Journal of Glaciology and Geocryology, 2010, 32 (5): 891-897. [吴倩如, 康世昌, 高坛光, 等. 青藏高原纳木错流域扎当冰川度日因子特征及其应用[J]. 冰川冻土, 2010, 32 (5): 891-897.]
[25]  Tedesco M, Fettweis X, van den Broede M R, et al. The role of albedo and accumulation in the 2010 melting record in Greenland. Environmental Research Letters, 2011, 6 (1), DOI: 10.1088/1748-9326/6/1/014005.
[26]  Sun Weijun, Qin Xiang, Ren Jiawen, et al. Surface energy balance in the accumulation zone of the Laohugou Glacier No.12 in the Qilian Mountains during ablation period [J]. Journal of Glaciology and Geocryology, 2011, 33 (1): 38-46. [孙维君, 秦翔, 任贾文, 等. 祁连山老虎沟12号冰川积累区消融期能量平衡特征[J]. 冰川冻土, 2011, 33 (1): 38-46.]
[27]  McGrath D, Colgan W, Steffen K, et al. Assessing the summer water budget of a moulin basin in the Sermeq Avannarleq ablation region, Greenland Ice Sheet [J]. Journal of Glaciology, 2011, 57 (205), DOI: 10.1088/1748-9326/4/2/024011.
[28]  Rennermalm A K, Smith L C, Stroeve J C, et al. Does sea ice influence Greenland Ice Sheet surface-melt? [J]. Environmental Research Letters, 2009, 4 (2): 024011.
[29]  McMillan M, Nienow P, Shepherd A, et al. Seasonal evolution of supra-glacial lakes on the Greenland Ice Sheet [J]. Earth and Planetary Science Letters, 2007, 262 (3-4): 484-492.
[30]  Sundal A V, Shepherd A, Nienow P, et al. Evolution of supra-glacial lakes across the Greenland Ice Sheet [J]. Remote Sensing of Environment, 2009, 10(113): 2164-2171.
[31]  Box J E, Ski K. Remote sounding of Greenland supraglacial melt lakes: implications for subglacial hydraulics [J]. Journal of Glaciology, 2007, 53(181): 257-265.
[32]  Selmes N, Murray T, James T D. Fast draining lakes on the Greenland Ice Sheet [J]. Geophysical Research Letters, 2011, 38(15), DOI: 10.1029/2011GL047872.
[33]  Das S B, Joughin I, Behn M D, et al. Fracture propagation to the base of the Greenland Ice Sheet during supraglacial lake drainage [J]. Science, 2008, 320: 778-781.
[34]  Sneed W A, Hamilton G S. Evolution of melt pond volume on the surface of the Greenland Ice Sheet [J]. Geophysical Research Letters, 2007, 34(3), DOI: 10.1029/2011GL028697.
[35]  Georgiou S, Shepherd A, McMillan M, et al. Seasonal evolution of supraglacial lake volume from ASTER imagery [J]. Annals of Glaciology, 2009, 50(52): 95-100.
[36]  Tedesco M, Steiner N. In-situ multispectral and bathymetric measurements over a supraglacial lake in western Greenland using a remotely controlled watercraft [J]. The Cryosphere, 2011, 5 (1): 479-498.
[37]  Adler J J. Assessing Supraglacial Water Volume and the Changing Dynamics of the Surface Topography near the Jakobshavn Glacier, Greenland. PhD Thesis, Colorado: University of Colorado, 2010.
[38]  Nolin A W, Payne M C. Classification of glacier zones in western Greenland using albedo and surface roughness from the Multi-angle Imaging SpectroRadiometer (MISR) [J]. Remote Sensing of Environment, 2007, 107 (1-2): 264-275.
[39]  Phillips T, Leyk S, Rajaram H, et al. Modeling moulin distribution on Sermeq Avannarleq glacier using ASTER and WorldView imagery and fuzzy set theory [J]. Remote Sensing of Environment, 2011, 115 (9): 2292-2301.
[40]  Catania G A, Neumann T A. Persistent englacial drainage features in the Greenland Ice Sheet [J]. Geophysical Research Letters, 2010, 37(2), DOI: 10.1029/2009GL041108.
[41]  Alley R B, Dupont T K, Parizek B R, et al. Access of surface meltwater to beds of sub-freezing glaciers: preliminary insights [J]. Annals of Glaciology, 2005, 40(1): 8-14.
[42]  Colgan W, Steffen K, McLamb W S, et al. An increase in crevasse extent, West Greenland: Hydrologic implications [J]. Geophysical Research Letters, 2011, 38(18), DOI: 10.1029/2011GL048491.
[43]  Yang K, Smith L C. Supraglacial streams on the Greenland Ice Sheet delineated from combined spectral-shape information in high resolution satellite imagery [J]. IEEE Geoscience and Remote Sensing Letters (in press), 2013.
[44]  Luthje M, Pedersen L T, Reeh N, et al. Modelling the evolution of supraglacial lakes on the West Greenland ice-sheet margin [J]. Journal of Glaciology, 2006, 52: 608-618.
[45]  Lampkin D J, VanderBerg J. A preliminary investigation of the influence of basal and surface topography on supraglacial lake distribution near Jakobshavn Isbrae, western Greenland [J]. Hydrological Processes, 2011, 25(21): 3347-3355.
[46]  Mernild S H, Hasholt B, Kane D L, et al. Jkulhlaup observed at Greenland Ice Sheet [J]. EOS, Transactions American Geophysical Union, 2008, 89(35): 321-322.
[47]  Smith L C. Satellite remote sensing of river inundation area, stage, and discharge: a review [J]. Hydrological Processes, 1997, 10(11): 1427-1439.
[48]  Lewis S M, Smith L C. Hydrologic drainage of the Greenland Ice Sheet [J]. Hydrological Processes, 2009, 14(23): 2004-2011.
[49]  Liu Qiao, Liu Shiyin. Progress in the study of englacial and subglacial drainage system of glaciers [J]. Advances in Earth Sciences, 2012, 27(6): 660-669. [刘巧, 刘时银. 冰川冰内及冰下水系研究综述[J]. 地球科学进展, 2012, 27(6): 660-669.]
[50]  Joughin I, Abdalati W, Fahnestock M. Large fluctuations in speed on Greenland's Jakobshavn Isbrae glacier [J]. Nature, 2004, 432: 608-610.
[51]  Bartholomew I, Nienow P, Mair D, et al. Seasonal evolution of subglacial drainage and acceleration in a Greenland outlet glacier [J]. Nature Geoscience, 2010, 6(3): 408-411.
[52]  Rignot E, Kanagaratnam P. Changes in the velocity structure of the Greenland Ice Sheet [J]. Science, 2006, 311: 986-990.
[53]  Shepherd A, Hubbard A, Nienow P, et al. Greenland ice sheet motion coupled with daily melting in late summer [J]. Geophysical Research Letters, 2009, 36, DOI: 10.1029/2008GL035758.
[54]  Palmer S, Shepherd A, Nienow P, et al. Seasonal speedup of the Greenland Ice Sheet linked to routing of surface water [J]. Earth and Planetary Science Letters, 2011, 302(3-4): 423-428.
[55]  Bartholomew I D, Nienow P, Sole A, et al. Seasonal variations in Greenland Ice Sheet motion: Inland extent and behaviour at higher elevations [J]. Earth and Planetary Science Letters, 2011, 307(3-4): 271-278.
[56]  Joughin I, Das S B, King M A, et al. Seasonal speedup along the western flank of the Greenland Ice Sheet [J]. Science, 2008, 320: 781-783.
[57]  Pimentel S, Flowers G E. A numerical study of hydrologically driven glacier dynamics and subglacial flooding [J]. Proceedings of the Royal Society A: Mathematical Physical and Engineering Sciences, 2011, 467: 537-558.
[58]  Creyts T T, Schoof C G. Drainage through subglacial water sheets [J]. Journal of Geophysical Research, 2009, 114(F4), DOI: 10.1029/2008JF001215.
[59]  Wingham D J, Siegert M J, Shepherd A, et al. Rapid discharge connects Antarctic subglacial lakes [J]. Nature, 2006, 440: 1033-1036.
[60]  Bell R E. The role of subglacial water in ice-sheet mass balance [J]. Nature Geoscience, 2008, 1 (5): 297-304.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133