全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2011 

青藏高原不同类型草地生态系统下土壤可培养细菌数量及多样性分布特征研究

, PP. 1419-1426

Keywords: 青藏高原,高山草地生态系统,可培养细菌,系统发育树

Full-Text   Cite this paper   Add to My Lib

Abstract:

以青藏高原北麓河不同类型草地生态系统下土壤为研究对象,研究了可培养细菌数量和多样性的季节性变化.结果显示研究区域可培养细菌数量为0.4×107~4.6×107CFU?g-1,不同类型草地生态系统下可培养细菌具有明显的季节差异高寒沼泽草甸和高寒沙化草原生态系统下土壤细菌在5月生物量最高,而高寒草甸生态系统下在7月有最高的生物量;可培养细菌分属于α-变形菌(α-Proteobacteria),β-变形菌(β-Proteobacteria),γ-变形菌(γ-Proteobacteria),放线菌门(Actinobacteria),厚壁菌门(Firmicutes)五个类群,其中放线菌门为优势类群.不同类型草地生态系统有不同的细菌多样性特征,表明这种细菌多样性变化与相邻区域的差异性符合物种—区域关系,说明随着高山草原的退化,青藏高原各高山草地生态系统间已产生较大的环境异质性,而这种异质性进一步影响到了物种的多样性.结果为利用微生物综合评价高山草地的生态环境,并合理利用微生物资源改良青藏高原高山草原提供了数据基础及特有的微生物资源.

References

[1]  Shang Zhanhuan, Ding Lingling, Long Ruijun, et al. Relationship between soil microorganisms, above-ground vegetation, and soil environment of degraded alpine meadows in the headwater areas of the Yangtze and Yellow Rivers, Qinghai-Tibetan Plateau [J]. Acta Prataculturae Sinica, 2007, 13 (6): 788-793. [尚占环, 丁玲玲, 龙瑞军, 等.江河源区退化高寒草地土壤微生物与地上植被及土壤环境的关系[J]. 草业学报, 2007, 13 (6): 788-793.]
[2]  Lu Xiaofei, Zhao Zhixiang, Xie Binyan, et al. DNA extraction and construction of a metagenomic fosmid library of alpine meadow soil from the Mila Mountains in Tibet, China [J]. Chinese Journal of Applied and Environmental Biology , 2009, 15(6): 824-829. [芦晓飞, 赵志祥, 谢丙炎, 等. 西藏米拉山高寒草甸土壤微生物DNA提取及宏基因组Fosmid文库构建[J]. 应用与环境生物学报, 2009, 15 (6): 824-829.]
[3]  Zhao Yonghua, Zhao Lin, Wu Tianyun, et al. Variation of CO2 concentration in active layer in Beiluhe permafrost region of the Tibetan Plateau during winter and spring , 2005[J]. Journal of Glaciology and Geocryology, 2006, 28(2):183-190. [赵拥华, 赵林, 武天云, 等. 冬春季青藏高原北麓河多年冻土活动层中气体CO2浓度分布特征[J]. 冰川冻土, 2006, 28(2): 183-190.]
[4]  Zhang G, Niu F, Ma X, et al. Phylogenetic diversity of bacteria isolates from the Qinghai-Tibet Plateau permafrost region[J]. Can J Microbiol, 2007, 53(8): 1000-1010.
[5]  Feng Huyuan, Ma Xiaojun, Zhang Gaosen, et al. Culturing and counting the microbial cells in permafrost on the Tibetan Plateau[J]. Journal of Glaciology and Geocryology, 2004, 26(2): 182-187. [冯虎元, 马晓军, 章高森, 等. 青藏高原多年冻土微生物的培养和计数[J]. 冰川冻土, 2004, 26(2): 182-187.]
[6]  Vorobyova E, Soina V, Gorlenko M, et al. The deep cold biosphere: facts and hypothesis[J]. FEMS Microbiology Reviews, 1997, 20: 277-290.
[7]  Zhang Wei, Zhang Gaosen, Liu Guangxiu, et al. Diversity and its temporal-spatial characteristics of eukaryotic microorganisms on Glacier No.1 at the Urumqi River head, Tianshan Mountains [J]. Journal of Glaciology and Geocryology , 2010, 32(5): 906-913. [张威,章高森,刘光琇,等. 天山乌鲁木齐河源1号冰川中真核微生物多样性分布及时空变化研究[J]. 冰川冻土, 2010, 32(5): 906-913.]
[8]  Bardgett R D, Leemans D K, Cook R, et al. Seasonality of soil biota of grazed and ungrazed hill grasslands [J]. Soil Biology and Biochemistry, 1997, 29(8):1285-1294.
[9]  Grayston S J, Wang S, Campbell C D, et al. Selective influence of plant species on microbial diversity in the rhizosphere[J]. Soil Biochemistry, 1998, 30: 369-378.
[10]  Liao Yangnan, Zhang Guizhi, Wang Fangjiu, et al. Microbial Ecology Research of Soil in Inner Mongolia Prairie [M]. Beijing: Science Press, 1985: 166-180. [廖仰南, 张桂芝, 王芳玖, 等.内蒙古草原土壤微生物生态学研究[M]. 北京:科学出版社, 1985: 166-180.]
[11]  Shi Yang, Dai Chuanchao, Lu Ling, et al. Investigation on microorganism community in different kind of red soil from Ecological Experiment Station,CAS [J]. Journal of Nanjing Normal University(Natural Science), 2002, 25(2): 32-36. [史央, 戴传超, 陆玲, 等.中国科学院红壤生态站不同土壤中的微生物类群调查[J]. 南京师大学报(自然科学版), 2002, 25(2): 32-36.]
[12]  Luo Ming, Qiu Wo. The ecological distribution of soil microorganisms in detests saline grassland in Xinjiang [J]. Grassland of China, 1995, 5: 29-33. [罗明, 邱沃. 新疆平原荒漠盐渍草地土壤微生物生态分布的研究[J]. 中国草地, 1995, 5: 29-33.]
[13]  Ding Lingling, Qi Biao, Shang Zhanhuan, et al. The Characteristics of soil microorganism quantity under different alpine grasslands in eastern Qilian Mountain [J]. Journal of Agro-Environment Scince, 2007, 26(6): 2104-2111. [丁玲玲, 祁彪, 尚占环, 等. 东祁连山不同高寒草地型土壤微生物数量分布特征研究[J]. 农业环境科学学报2007, 26(6): 2104-2111.]
[14]  Yue Jun, Liu Guangxiu, Zhang Gaosen, et al. Changes in soil properties and culturable bacteria diversity in Zhadang Glacier foreland[J]. Journal of Glaciology and Geocryology, 2010, 32 (6): 1180-1185. [岳君, 刘光琇, 章高森, 等. 念青唐古拉山扎当冰川退缩前沿土壤性质与可培养细菌多样性变化[J]. 冰川冻土, 2010, 32 (6): 1180-1185.]
[15]  Huang Dalin, Yuan Guifeng, Xu Yajuan, et al. Isolation and identification of Actinomycetes sp. BH0954 from the mangrove forest soil of Guangxi Beihai[J]. Chinese Agricultural Science Bulletin, 2010,26(18): 406-409. [黄大林,袁桂峰,徐雅娟,等. 广西北海红树林土壤放线菌BH0954 的分离和鉴定[J]. 中国农学通报, 2010,26(18): 406-409.]
[16]  Horner-Devine M C, Lage M, Hughes J B, et al. A taxa-area relationship for bacteria [J]. Nature, 2004, 432: 750-753.
[17]  Green J L, Holmes A J, Westoby M, et al. Spatial scaling of microbial eukaryote diversity[J]. Nature, 2004, 432: 747-750.
[18]  Herbert R A. A perspective on the biotechnological potential of extremophiles[J]. Trends in Biotechnology, 1992, 10: 395-401.
[19]  Requena N, Perez-Solis E, Azcon-Aquilar C, et al. Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems [J]. Applied and Environmental Microbiology, 2001, 67(2): 495-498.
[20]  Beniston M. Climatic change in mountain regions: a review of possible impacts [J]. Climatic Change, 2003, 59: 5-31.
[21]  Clark F E, Pawl E A. The microflora of grassland [J]. Advances in Agronomy, 1970, 22: 375-43.
[22]  Bardgett R D, Leemans D K, Cook R, et al. Seasonality of soil biota of grazed and ungrazed hill grasslands [J]. Soil Biology and Biochemistry, 1997, 29: 1285-1294.
[23]  Gans J, Wolinsky M, Dunbar J. Computational improvements reveal great bacterial diversity and high metal toxicity in soil[J]. Science, 2005, 309: 1387-1390.
[24]  Ren Zuohua, Zhang Yuguang, Li Diqiang, et al. The soil microbial activities and microbial biomass in Sanjiangyuan Alpine glassland[J]. Acta Ecologica Sinica, 2011, 31(11): 3232-3238. [任佐华,张于光,李迪强,等. 三江源地区高寒草原土壤微生物活性和微生物量[J]. 生态学报, 2011,31(11): 3232-3238.]
[25]  Mo Shenguo, Zhang Baiping, Cheng Weiming, et al. Major environmental effects of the Tibetan Plateau [J]. Progress in Geography, 2004, 24(2): 88-96. [莫申国, 张百平, 程维明 等. 青藏高原的主要环境效应[J]. 地理科学进展, 2004, 24(2): 88-96.]
[26]  Zhang Y, Li D, Wang H, et al. The diversity of denitrifying bacteria in the alpine meadow soil of Sanjiangyuan natural reserve in Tibet Plateau [J]. Chinese Science Bulletin, 2006, 51(10): 1245-125.
[27]  Sun Honglie. Formation and Evolution of the Qinghai-Xizang Plateau [M]. Shanghai: Shanghai Science and Technology Press, 1996: 168-192. [孙鸿烈. 青藏高原的形成演化[M]. 上海: 上海科学技术出版社, 1996: 168-192.]
[28]  Klein J A, Harte J, Zhao X Q. Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau [J]. Ecology Letters, 2004, 7(12): 1170-1179.
[29]  Zhang Yuguang, Wang Huimin, Li Diqiang, et al. Molecular diversity and phylogenetic analysis of nitrogen-fixing (nifH) genes in alppraire soil of Sanjiangyuan nature reserve[J]. Acta Microbiologica Sinica, 2005, 45(2): 166-171. [张于光, 王慧敏, 李迪强, 等. 三江源高寒草甸土固氮基因( nifH )的多样性和系统发育研究[J]. 微生物学报, 2005, 45(2): 166-171.]
[30]  Lin Chaofeng, Chen Zhanquan, Xue Quanhong, et al. Effect of vegetation degradation on soil nutrients and microflora in the Sanjiangyuan Region of Qinghai, China[J]. Chinese Journal of Applied and Environmental Biology, 2007, 13 (6) : 788-793. [林超峰,陈占全,薛泉宏,等. 青海三江源区植被退化对土壤养分和微生物区系的影响[J]. 应用与环境生物学报 2007, 13 (6): 788-793.]

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133