全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
冰川冻土  2013 

青藏公路沿线土壤微生物数量变化及其影响因素研究

DOI: 10.7522/j.issn.1000-0240.2013.0054, PP. 457-464

Keywords: 青藏公路,土壤养微生物,微生物数量,土壤理化性质,环境因子

Full-Text   Cite this paper   Add to My Lib

Abstract:

以青藏公路沿线土壤为研究对象,研究了土壤可培养微生物数量的变化特征及影响因子.结果表明青藏公路沿线土壤可培养微生物数量为0.77×106~2.44×107CFU·g-1dw;沿青藏公路从南(申格里贡山)到北(西大滩),土壤可培养细菌与真菌数量表现为先迅速减少,然后渐趋平缓;可培养放线菌数量先减少后增加;土壤总氮、有机碳和含水量逐渐降低,而pH值逐渐升高.C/N比率与真菌/细菌比率变化趋势相似,均为先增加后减少.土壤可培养微生物数量与理化因子的相关性分析结果表明青藏公路沿线土壤微生物数量主要受纬度和土壤理化性质的影响,表现为微生物数量与纬度和pH值显著负相关,而与总氮、有机碳和含水量极显著正相关.

References

[1]  Hgerg M N, Hgerg P, Myrold D D. Is microbial community composition in boreal forest soils determined by pH, C-to-N ratio, the trees, or all three?[J]. Oecologia, 2007,150(4): 590-601.
[2]  Li Guihua. Effect of organic amendments and chemical fertilizer on soil microbial activity, biomass and community structure[J]. Chinese Agricultural Science Bulletin, 2010, 26(14): 204-208. [李桂花. 不同施肥对土壤微生物活性、 群落结构和生物量的影响[J]. 中国农学通报, 2010,26(14): 204-208.]
[3]  Baath E, Anderson T H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques[J]. Soil Biology and Biochemistry, 2003, 35(7): 955-963.
[4]  Garbeva P, van Veen J A, van Elsas J D. Microbial Diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness[J]. Annual Review of Phytopathology, 2004, 42: 243-270.
[5]  Harris J. Soil microbial communities and restoration ecology: facilitators or followers?[J]. Science, 2009,325(5940): 573-574.
[6]  Zheng Shizhang, Xiao Qingliang, Wu Weidong, et al. Relationship among microbial group's enzyme activity and physicochemical properties under different artificial forestry in hilly red soil [J]. Chinese Journal of Eco-Agriculture, 2008, 16(1): 57-61. [郑诗樟, 肖青亮, 吴蔚东, 等. 丘陵红壤不同人工林型土壤微生物类群、 酶活性与土壤理化性状关系的研究[J]. 中国生态农业学报, 2008, 16(1): 57-61.]
[7]  Ren Zuohua, Zhang Yuguang, Li Diqiang, et al. The soil microbial activities and microbial biomass in Sanjiangyuan alpine glassland[J]. Acta Ecologica Sinica, 2011, 31(11): 3232-3238. [任佐华, 张于光, 李迪强, 等. 三江源区高寒草原土壤微生物活性和微生物量[J]. 生态学报, 2011, 31(11): 3232-3238.]
[8]  Mo Shenguo, Zhang Baiping, Cheng Weiming, et al.Major environmental effect of the Tibetan Plateau [J]. Progress in Geography, 2004, 23(2): 88-96. [莫申国, 张百平, 程维明, 等. 青藏高原的主要环境效应[J]. 地理科学进展, 2004, 23(2): 88-96.]
[9]  Tang Maocang, Cheng Guodong, Lin Zhenyao. Tibet Plateau Modern Climate Change and Its Impact on The Environment [M]. Guangzhou: Guangdong Science and Technology Press, 1998.
[10]  Chen Wei, Zhang Wei, Li Shiweng, et al.Features of soil cultivable microorganism quantity and diversity distribution under different alpine grassland ecosystems in Qinghai-Tibet Plateau [J]. Journal of Glaciology and Geocryology, 2011, 33(6): 1419-1426. [陈伟, 张威, 李师翁, 等. 青藏高原不同类型草地生态系统下土壤可培养细菌数量及多样性分布特征研究[J]. 冰川冻土, 2011, 33(6): 1419-1426.]
[11]  Ding Mingjun, Shen Zhenxi, Zhang Yili, et al.Vegetation change along the Qinghai-Xizang Highway and Railway from 1981 to 2001[J]. Resources Science, 2005, 27(5): 128-133. [丁明军, 沈振西, 张镱锂, 等. 青藏公路与铁路沿途1981年~2001年植被覆盖变化[J]. 资源科学, 2005, 27(5): 128-133.]
[12]  Jin H, Yu Q, Wang S, et al.Changes in permafrost environments along the Qinghai–Tibet engineering corridor induced by anthropogenic activities and climate warming[J]. Cold Regions Science and Technology, 2008, 53(3): 317-333.
[13]  Mao Xuesong, Li Ning, Hou Zhongjie, et al.Effect of special weather on road subgrade in permafrost area[J]. Journal of Chang’an University (Natural Science Edition), 2007,27(3): 1-4. [毛雪松, 李宁, 候仲杰, 等. 特殊气候条件对多年冻土地区路基的影响[J]. 长安大学学报(自然科学版), 2007, 27(3): 1-4.]
[14]  Liu Zhenjing, Li Lubin, Zhuang Caiyun, et al. Analysis of microbial diversity in soil along the Qinghai-Tibet Railway [J]. Research of Environmental Sciences, 2008, 21(6): 176-181. [刘振静, 李潞滨, 庄彩云, 等. 青藏铁路沿线土壤可培养微生物种群多样性分析[J]. 环境科学研究, 2008,21(6): 176-181.]
[15]  Liu Guangxiu, Ma Xiaojun, Chen Tuo, et al. Progress and significance of studies on microorganisms in permafrost sediments[J]. Journal of Glaciology and Geocryology, 2004, 26(2): 188-191. [刘光琇,马晓军,陈拓, 等. 冻土微生物研究进展与意义[J]. 冰川冻土, 2004, 26(2): 188-191.]
[16]  Liu Y, He J, Shi G, et al. Diverse communities of arbuscular mycorrhizal fungi inhabit sites with very high altitude in Tibet Plateau[J]. FEMS Microbiology Ecology, 2011, 78: 355-365.
[17]  Zhang Gaosen. Microbial Diversity in the Qinghai-Tibet Plateau Permafrost Region and Its Potential Applications. PhD Thesis, Lanzhou: Lanzhou University, 2007. [章高森. 青藏高原多年冻土区微生物多样性及其潜在应用的研究. 博士论文, 兰州: 兰州大学, 2007.]
[18]  Wang Qilan, Cao Guangmin, Wang Changting. Quantitative characters of soil microbes and microbial biomass under different vegetations in alpine meadow [J]. Chinese Journal of Ecology, 2007, 26(7): 1002-1008. [王启兰, 曹广民, 王长庭. 高寒草甸不同植被土壤微生物数量及微生物生物量的特征[J]. 生态学杂志, 2007, 26(7): 1002-1008.]
[19]  Gilichinsky D A, Khlebnikova G M, Zvyagintsev D G, et al. Microbiology of sedimentary materials in the permafrost zone[J]. International Geology Review, 1989, 31(8): 847-858.
[20]  Aislabie J M, Chhour K L, Saul D J,et al. Dominant bacteria in soils of Marble point and Wright valley, Victoria Land, Antarctica[J]. Soil Biology Biochemistry, 2006, 38(10): 3041-3056.
[21]  Bai Y, Yang D, Wang J, et al. Phylogenetic diversity of culturable bacteria from alpine permafrost in the Tianshan Mountains, northwestern China[J]. Research in Microbiology, 2006, 157(8): 741-751.
[22]  Hinsa-Leasure S M, Bhavaraju L, Rodrigues J L M,et al.Characterization of a bacterial community from a Northeast Siberian sea coast permafrost sample[J]. Microbiology Ecology, 2010, 74(2): 103-113.
[23]  He Rong, Wang Jiashe, Shi Zheng, et al.Variations of soil microbial biomass across four different plant communities along an elevation gradient in Wuyi Mountains, China [J]. Acta Ecologica Sinica, 2009, 29(9): 5138-5144. [何容, 汪家社, 施政, 等. 武夷山植被带土壤微生物量沿海拔梯度的变化[J]. 生态学报, 2009, 29(9): 5138-5144.]
[24]  Feng Huyuan, Ma Xiaojun, Zhang Gaosen, et al.Culturing and counting the microbial cells in permafrost on the Tibetan Plateau [J].Journal of Glaciology and Geocryology, 2004, 26(2): 182-187. [冯虎元, 马晓军, 章高森, 等. 青藏高原多年冻土微生物的培养和计数[J]. 冰川冻土, 2004, 26(2): 182-187.]
[25]  Hu Ping, Wu Xiukun, Li Shiweng, et al. Progress of studies on permafrost microbial ecology in the past 10 years[J]. Journal of Glaciology and Geocryology, 2012, 34(3): 732-739. [胡平, 伍修锟, 李师翁, 等. 近10 a来冻土微生物生态学研究进展[J]. 冰川冻土, 2012, 34(3): 732-739.]
[26]  He Xiaoling, Yin Linke, Yan Cheng,et al.Genetic characteristics and taxonomy of highland soil in the north front of the central Tian Shan mountains[J]. Chinese Journal of Soil Science, 2006, 37(5): 833-836. [何晓玲, 尹林克, 严成, 等. 天山中部北麓丘陵地带土壤发生特性与系统分类[J]. 土壤通报, 2006,37(5): 833-836.]
[27]  Menyailo O V, Hungate B A, Zech W. Tree species mediated soil chemical changes in a Siberian artificial afforestation experiment[J]. Plant and Soil, 2002,242: 171-182.
[28]  Li W K W. Annual average abundance of heterotrophic bacteria and Synechococcusin surface ocean waters[J]. Limnology and Oceanography, 1998,43(7): 1746-1753.
[29]  Murphy L S, Haugen E M. The distribution and abundance of phototrophic ultraplankton in the North Atlantic[J]. Limnology and Oceanography, 1985, 30(1): 47-58.
[30]  Pomeroy L R, Wiebe W J. Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria[J]. Aquatic Microbial Ecology, 2001, 23: 187-204.
[31]  Xiong J, Liu Y, Lin X, et al.Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Qinghai-Tibet Plateau[J]. Environmental Microbiology, 2012, 14(9): 2457-2466.
[32]  Yu Jianlong, Shi Hongxiao. Quantity of soil microbe in felty soil in different elevations in Yushu of Qinghai province and affecting factors[J]. Chinese Journal of Grassland, 2011, 33(6): 46-50. [于健龙, 石红霄. 青海玉树不同海拔高度草毡土微生物数量及影响因子[J]. 中国草业科学, 2011, 33(6): 46-50.]
[33]  Yi Haiyan, Gong Yuanbo, Chen Linwu,et al. Soil nutrient status and microbiological properties in the mountain forests/arid valley ecotone in the upper reaches of Minjiang River after converting farmland to forest [J]. Research of Soil and Water Conservation, 2010,17(2): 130-135. [易海燕, 宫渊波, 陈林武, 等. 岷江上游山地森林/干旱河谷交错带退耕还林后土壤养分变化和微生物分布特征[J].水土保持研究, 2010,17(2): 130-135.]
[34]  Zhang Di, Zhang Yuxin, Qu Laiye, et al. Effects of altitude on soil microbial community in Quercus liaotungensisforest [J]. Chinese Journal of Applied Ecology, 2012,23(8): 2041-2048. [张地, 张育新, 曲来叶, 等. 海拔对辽东栎林地土壤微生物群落的影响[J]. 应用生态学报, 2012, 23(8): 2041-2048.]
[35]  Jiang Bingshen, Yang Xitian. Influences of different green space types on microbial quantity and microbial biomass in soil[J]. Hunan Agricultural Sciences, 2011, 56(17): 52-54. [蒋炳伸, 杨喜田. 不同城市绿地类型对土壤微生物数量及微生物量的影响[J]. 湖南农业科学, 2011, 56(17): 52-54.]
[36]  Li Changming, Zhang Xinfang, Zhao Lin,et al.Phylogenetic diversity of bacteria isolates and community function in permafrost-affected soil along different vegetation types in the Qinghai-Tibet Plateau[J]. Journal of Glaciology and Geocryology, 2012,34(3): 713-725. [李昌明, 张新芳, 赵林, 等. 青藏高原多年冻土区土壤需氧可培养细菌多样性及群落功能研究[J]. 冰川冻土, 2012, 34(3): 713-725.]
[37]  Wang Lu, Dong Xiaopei, Zhang Wei, et al. Quantitative characters of microorganisms in permafrost at different depths and their relation to soil physicochemical properties[J]. Journal of Glaciology and Geocryology, 2011, 33(2): 436-441. [王鹭, 董小培, 张威, 等. 不同深度冻土微生物数量特征及其与土壤理化性质的关系[J]. 冰川冻土, 2011,33(2): 436-441.]
[38]  Shen Ping, Chen Xiangdong. Microbiology[M]. Higher Education Press, 2006: 148-149.
[39]  Shi Hongxiao, Yu Jianlong. Quantity of microbes in the different vegetation types on the Qinghai-Tibetan Plateau[J].Chinese Journal of Soil Science, 2012, 43(1): 47-51. [石红霄, 于健龙. 青藏高原不同植被类型土壤微生物数量及影响因子[J]. 土壤通报, 2012, 43(1): 47-51.]
[40]  Cao Zhiping, Li Depeng, Han Xuemei. The fungal to bacteria ratio in soil food webs, and its measurement [J]. Acta Ecologica Sinica, 2011, 31(16): 4741-4748. [曹志平, 李德鹏, 韩雪梅. 土壤食物网中的真菌/细菌比率及测定方法[J]. 生态学报, 2011, 31(16): 4741-4748.]
[41]  Chiu C-Y, Chen T-H, Imberger K, et al.Particle size fractionation of fungal and bacterial biomass in subalpine grassland and forest soils[J]. Geoderma, 2006, 130(3-4): 265-271.
[42]  Hgerg M N, Chen Y, Hgerg P. Gross nitrogen mineralization and fungi-to-bacteria ratios are negatively correlated in boreal forests [J].Biology and Fertility of Soils, 2007,44: 363-366.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133