We demonstrate in this paper that periodic variations of the J2 gravity coefficient of a
planet induce small cumulative perturbations on a given family of circular
equatorial orbits, and that these perturbations could be measurable with
current radiosciences technology. For this purpose, we first consider a
Poincaré expansion of the Newtonian equations of motion. Then, by using Floquet’s
theory, we demonstrate that, unlike the excitation mechanism, the perturbations
are non- periodic, and that the orbit is not “stable” in the long-term, with
perturbations growing exponentially. We give the full theory and an application
to the case of planet Mars.
References
[1]
Chao,
B.F. and Rubincam, D.P. (1990) Variations of Mars Gravitational
Field and Rotation Due to Seasonal CO2 Exchanges. Journal of Geophysical Research, 95, 14755-14760. http://dx.doi.org/10.1029/JB095iB09p14755
[2]
Karatekin,
O., Duron,
J., Rosenblatt,
P., Van Hoolst,
T., Dehant, V.
and Barriot, J.P.
(2005) Mar’s Time-Variable
Gravity and Its Determination: Simulated Geodesy Experiments. Journal of Geophysical Research—Planets, 110, E06001. http://dx.doi.org/10.1029/2004JE002378
[3]
Mioc, V.
and Stavinschi, M.
(2004) Stability of Satellite Orbits around Nonspherical Planets. Artificial Satellites, 39, 129-133.
[4]
Jezewski, D.J. (1983) A Noncanonical Analytic Solution to
the J2 Perturbed Two-Body Problem. Celestial Mechanics, 30, 343-361. http://dx.doi.org/10.1007/BF01375505
[5]
Jezewski,
D.J. (1983) An Analytical Solution for the J2 Perturbed Equatorial
Orbit. Celestial Mechanics, 30,
363-371. http://dx.doi.org/10.1007/BF01375506
[6]
Chazy, J.
(1953) Mécanique Céleste. Presses Universitaires de France, Paris.
[7]
Dieudonné, J. (1980) Calcul Infinitésimal. Hermann Ed.,
Paris.
[8]
Angot, A. (1972) Compléments de Mathématiques. Masson
et Cie Ed., Paris.
[9]
Walter, W. (1998) Ordinary Differential Equations.
Springer, New-York.
[10]
Roseau, M. (1976) Equations différentielles.
Masson, Paris.
[11]
Vijayaraghavan, A. (1984) An Analytic Solution for the Orbital
Perturbations of the Venus Radar Mapper Due to Gravitational Harmonics. AIAA/AAS Astrodynamics Conference, Paper
AIAA-84-1995.
[12]
Mioc, V.
and Stavinschi, M.
(1998) Stability of Satellite Motion in the Equatorial Plane of the Rotating Earth. Proceedings of the Journées des Systèmes
de Référence Spatio-Temporels, N. Capitaine Ed., 257-261.
[13]
Mioc, V. and Stavinschi, M. (2001) Effects of Mars’ Rotation on Orbiter Dynamics. Proceedings of the Journées des Systèmes de
Référence Spatio-Temporels, N. Capitaine Ed, 120-125.
[14]
Mioc, V.
and Stavinschi, M.
(2003) Stability of Equatorial Satellite Orbits. Proceedings of the Journées des Systèmes de Référence Spatio-Temporels,
N. Capitaine Ed., 255-258.
[15]
Folkner,
W.M., Yoder,
C.F., Yuan,
D.N., Standish,
E.M. and Preston, R.A. (1997) Interior Structure and Seasonal
Mass Redistribution of Mars from Radio Tracking of Mars Pathfinder. Science, 278, 1749-1752. http://dx.doi.org/10.1126/science.278.5344.1749
[16]
Lemoine,
F.G., Smith,
D.E., Rowlands,
D.D., Zuber,
M.T., Neumann,
G.A., Chinn,
D.S. and Pavlis, D.E.
(2001) An Improved Solution of the Gravity Field of Mars (GMM-2B) from Mars
Global Surveyor. Journal of Geophysical Research, 106, 23359-23376. http://dx.doi.org/10.1029/2000JE001426
[17]
Moyer,
T.D. (2000) Formulation for Observed and Computed Values of Deep Space Network
Data Types for Navigation. Monograph 2, Deep Space Communications and
Navigation Series, JPL Publication 00-7.
[18]
Yoder,
C.F., Williams,
J.G., Dickey,
J.O., Schutz,
B.E., Eanes,
R.J. and Tapley, B.D.
(1983) Secular Variation of Earth’s Gravitational Harmonic J2 Coefficient
from LAGEOS and Non-Tidal Acceleration of Earth’s Rotation. Nature,
303, 757-762. http://dx.doi.org/10.1038/303757a0
[19]
Samain, E.
(2002) One Way Laser Ranging on the Solar System: TIPO. Geophysical Research Abstracts, 4, Article ID: 05808.
[20]
Hu, W.
and Scheeres,
D.J. (2004) Numerical Determination of Stability Regions for Orbital Motion in Uniformly
Rotating Second Degree and Order Gravity Fields. Planetary and Space Science, 52, 685-692. http://dx.doi.org/10.1016/j.pss.2004.01.003