This review provides a general overview of petroleum characteristics and
bioremediation strategies applications in oceanic environments contaminated
with petroleum hydrocarbons during exploration and transportation processes
offshore. The vast oil reserves in the offshore fields have been explored for
the production of light and heavy oil. The hydrocarbons exhibit very different
physicochemical characteristics including those of hydrophobicity, molecular
weight, melting and boiling points, toxicity and recalcitrance. This review is
to highlight the basic oil characteristics, and to reveal the manner in which
accidents can occur resulting in oil spills in the sea. We focus on hydrocarbon
degradation through the application of bioremediation techniques, because this
is considered more advantageous economically compared with the physical or
chemical remediation techniques, as well as being more effective in contaminant
removal. This study provides knowledge about strategies that can be applied in
accidents involving oil spill on the ocean and thus boosts oil spill cleanup
technology and lowers the environmental risks of offshore management of
activities with petroleum.
References
[1]
Brown, D.W., Ramos, S.L., Friedman, A.J. and MacLeod, W.D.J. (1979) Analysis of Trace Levels of Petroleum Hydrocarbons
in Marine Sediments Using a Solvent/Slurry Extration Procedure. In:
Hertz, H.S. and Chesler, S.N., Eds., Trace Organic
Analysis: A New Frontier in Analytical Chemistry, 9th Edition, U.S. Government Printing Office, Washington DC, 161-167.
[2]
Speight,
J.G. (2007) The Chemistry and Technology of Petroleum. 4th Edition, CRC Press, New York.
[3]
Halliburton, A.D. (2001) Basic Petroleum
Geology and Log Analysis. Halliburton Company.
Aguilera,
R.F., Eggert, R.G., Lagos, C.C.G. and Tilton J.E. (2009) Depletion and the Future Availability
of Petroleum Resources. Energy Journal, 30, 141-174.
[6]
Stone,
R.W. and ZoBell, C.E. (1952) Bacterial Aspects of the Origin of
Petroleum. Journal of Industrial and Engineering
Chemistry, 44,
2564-2567. http://dx.doi.org/10.1021/ie50515a030
[7]
Welte, D.H. and Yokler, A. (1980) Evolution of Sedimentar Basins from the
Standpoint of Petroleum Origin and Accumulation—An Approach for a Quantitative
Basin Study. Organic Geochemistry, 2,
1-8. http://dx.doi.org/10.1016/0146-6380(80)90016-9
[8]
Kissin, Y. (1987)
Catagenesis and Composition of Petroleum: Origin of n-Alkanes and Isoalkanes in
Petroleum Crudes. Geochimica et
Cosmochimica Acta, 51, 2445-2457. http://dx.doi.org/10.1016/0016-7037(87)90296-1
[9]
Tissot,
B.P. and Welte, D.H. (1984) Diagenesis, Catagenesis and Metagenesis
of Organic Matter. In: Tissot, B.P. and Welte, D.H., Eds., Petroleum Formation and Occurrence, Springer-Verlag, New York, 69-73. http://dx.doi.org/10.1007/978-3-642-87813-8_6
[10]
Martinelli,
G. (2009) Petroleum Geochemistry Petroleum
Engineering—Upstream. UNESCO-EOLSS, Reggio Emilia, Italy.
[11]
ANP (2011) Anuário Estatístico Brasileiro do
Petróleo, Gás Natural e Biocombustíveis. Agência Nacional do Petróleo, Gás
Natural e Biocombustíveis.
[12]
Altkins, P.W.
(2001) Princípios de Química: Questionando a vida moderna e o meio ambiente.
Artmed, Porto Alegre.
Morrison, R.T. (1985) Quimica Organica. 2nd Edition, Fondo
Edicativo Interamericano, S.A. de C.V., San Marcos.
[18]
Milanelli, J.C.C. (1994) Efeitos do petróleo e da limpeza por
jateamento de um costao rochoso da Praia de Bareque- caba, Sao Sebastiao, Sao Paulo. Universidade de
Sao Paulo, Sao
Paulo.
[19]
Zílio, E.L. and Pinto, U.B. (2002) Identification and Distribution of the Main
Groups of Components Present in Brazilian Crude Oils. Boletins Técnicos
da Petrobras, 45, 21-25.
[20]
ANP (2012) Indústria Nacional do Petróleo e do Gás
Natural. Anuário Estatístico Brasileiro do Petróleo, Gás Natural e
Biocombustíveis, Agência
Nacional do Petróleo, Gás Natural e Biocombustíveis, 1-17.
Gundlach,
E.R. and Hayes, M.O. (1978) Vulnerability of Coastal Environments to Oil Spill Impacts. Marine Technology Society Journal, 12,
18-27.
[24]
Silva, E.M., Peso-Aguiar, M.C., Navarro,
M.F.T., Barros, C. and Chastinet, A. (1997) Impact
of Petroleum Pollution on Aquatic Coastal Ecosystems in Brazil. Applied and Environmental Microbiology, 16,
112-118. http://dx.doi.org/10.1002/etc.5620160112
[25]
Fay,
J.A. (1971) Physical Processes in the Spread of Oil
on a Water Surface. International Oil
Spill Conference Proceedings, 1971, 463-467. http://dx.doi.org/10.7901/2169-3358-1971-1-463
[26]
Blumer,
M., Sanders, H.L., Grassle, J.F. and Hampson, G.R. (1971) An Ocean of Oil: A Small Oil Spill. Environment: Science and
Policy for Sustainable Development, 13, 37-41. http://dx.doi.org/10.1080/00139157.1971.9930568
[27]
Haritash, A.K. and Kaushik, C.P. (2009) Biodegradation Aspects of
Polycyclic Aromatic Hydrocarbons (PAHs): A Review. Journal of Hazardous Materials, 169, 1-15. http://dx.doi.org/10.1016/j.jhazmat.2009.03.137
[28]
Eastcott,
L., Shiu, W.Y. and Mackay, D. (1988) Environmentally Relevant Physical-Chemical Properties of
Hydrocarbons: A Review of Data and Development of Simple Correlations. Oil and Chemical Pollution, 4,
191-216. http://dx.doi.org/10.1016/S0269-8579(88)80020-0
Bridié,
A.L., Wanders, T.H.H., Zegveld, W. and Van Der Heijde, H.B. (1980) Formation, Prevention and Breaking of Sea Water in Crude Oil
Emulsions “Chocolate Mousses”. Marine
Pollution Bulletin, 11, 343-348. http://dx.doi.org/10.1016/0025-326X(80)90279-9
[31]
Thingstad,
T. and Pengerud, B. (1982) The Formation of “Chocolate Mousse”
from Staffjord Crude Off and Seawater. Marine Pollution Bulletin, 14, 214-216. http://dx.doi.org/10.1016/0025-326X(83)90254-0
[32]
Shiu,
W.Y., Bobra, M., Bobra, A.M., Maijanen, A., Suntio, L. and Mackay, D. (1990) The Water Solubility of Crude Oils and Petroleum
Products. Oil and Chemical Pollution, 7,
57-84. http://dx.doi.org/10.1016/S0269-8579(05)80034-6
[33]
Fingas,
M. and Fieldhouse, B. (2004) Formation of Water-in-Oil Emulsions and
Application to Oil Spill Modelling. Journal
of Hazardous Materials, 107, 37-50. http://dx.doi.org/10.1016/j.jhazmat.2003.11.008
[34]
Aske,
N., Kallevik, H. and Sjoblom, J. (2002) Water-in-Crude
Oil Emulsion Stability Studied by Critical Electric Field Measurements.
Correlation to Physico-Chemical Parameters and Near-Infrared Spectroscopy. Journal of Petroleum Science and Engineering, 36, 1-17. http://dx.doi.org/10.1016/S0920-4105(02)00247-4
[35]
Miller,
R.M., Singer, G.M., Rosen, J.D. and Bartha, R. (1988) Photolysis
Primes Biodegradation of Benzo[a]pyrene. Applied
and Environmental Microbiology, 54, 1724-1730.
[36]
Atlas,
R.M. (1991) Microbial Hydrocarbon Degradation-Bioremediation Oil Spills. Journal of Chemical Technology and
Biotechnology, 52,
149-156. http://dx.doi.org/10.1002/jctb.280520202
[37]
Cury, J.D.E.C. (2002) Atividade
microbiana e diversidades metabólica e genética em solo de mangue contaminado
com petróleo. Master Degree Dissertation, Universidade de Sao Paulo, Sao Paulo.
[38]
Rodrigues, E.M., Kalks, K.H.M. and Tótola, M.R. (2015) Prospect, Isolation, and Characterization
of Microorganisms for Potential Use in Cases of Oil Bioremediation along the
Coast of Trindade Island, Brazil. Journal
of Environmental Management, 156, 15-22. http://dx.doi.org/10.1016/j.jenvman.2015.03.016
[39]
Brooks,
J.M., Bernard, B.B., Sauer, T.C. and Abdel-Reheim, H. (1978) Environmental Aspects of a Well Blowout in the Gulf of Mexico. Environmental Science & Technology, 12,
695-703. http://dx.doi.org/10.1021/es60142a013
[40]
Leahy,
J.G. and Colwell, R.R. (1990) Microbial Degradation of Hydrocarbons in the Environment. Microbiological Reviews, 54,
305-315.
[41]
Ghazali, F.M., Rahman, R.N.Z.A., Salleh, A.B. and Basri, M. (2004) Biodegradation of Hydrocarbons in Soil
by Microbial Consortium. International
Biodeterioration & Biodegradation, 54, 61-67. http://dx.doi.org/10.1016/j.ibiod.2004.02.002
[42]
Xue, J., Yu, Y., Bai, Y., Wang, L. and Wu, Y.
(2015) Marine Oil-Degrading Microorganisms and Biodegradation Process of
Petroleum Hydrocarbon in Marine Environemts: A Review. Current Microbiology, 71, 220-228. http://dx.doi.org/10.1007/s00284-015-0825-7
[43]
Colwell,
R.R. and Walker, J.D. (1977) Ecological Aspects of Microbial Degradation of Petroleum in the
Marine Environment. Critical Reviews in
Microbiology, 5, 423-445. http://dx.doi.org/10.3109/10408417709102813
[44]
Atlas,
R.M. (1981) Microbial Degradation of Petroleum Hydrocarbons: An
Environmental Perspective. Microbiological
Reviews, 45,
180-209.
[45]
Samanta,
S.K., Singh, O.V. and Jain, R.K. (2002) Polycyclic Aromatic Hydrocarbons:
Environmental Pollution and Bioremediation. Trends
in Biotechnology, 20, 243-248. http://dx.doi.org/10.1016/S0167-7799(02)01943-1
[46]
Hamme,
J.D., Singh, A. and Ward, O.P. (2003) Recent Advances in Petroleum
Microbiology. Microbiology and Molecular Biology Reviews, 67, 503-549. http://dx.doi.org/10.1128/MMBR.67.4.503-549.2003
[47]
Ruberto, L., Vazquez, S.C. and Mac Cormack, W.P. (2003) Effectiveness of the Natural Bacterial
Flora, Biostimulation and Bioaugmentation on the Bioremediation of a
Hydrocarbon Contaminated Antarctic Soil. International
Biodeterioration & Biodegradation, 52, 115-125. http://dx.doi.org/10.1016/S0964-8305(03)00048-9
[48]
Beal,
R. and Betts, W.B. (2000) Role of Rhamnolipid Biosurfactants in
the Uptake and Mineralization of Hexadecane in Pseudomonas aeruginosa. Journal
of Applied Microbiology, 89, 158-168. http://dx.doi.org/10.1046/j.1365-2672.2000.01104.x
Bordoloi, N.K. and Konwar, B.K. (2009) Bacterial Biosurfactant in Enhancing
Solubility and Metabolism of Petroleum Hydrocarbons. Journal of Hazardous Materials, 170, 495-505. http://dx.doi.org/10.1016/j.jhazmat.2009.04.136
[51]
Das,
N. and Chandran, P. (2011) Microbial Degradation of Petroleum
Hydrocarbon Contaminants: An Overview. Biotechnology
Research International, 2011, Article ID: 941810. http://dx.doi.org/10.4061/2011/941810
[52]
Nedwell,
D. (1999) Effect of Low Temperature on Microbial Growth: Lowered
Affinity for Substrates Limits Growth at Low Temperature. FEMS Microbiology Ecology, 30,
101-111. http://dx.doi.org/10.1111/j.1574-6941.1999.tb00639.x
[53]
Coulon,
F., Pelletier, E., Gourhant, L. and Delille, D. (2005) Effects of Nutrient and Temperature on Degradation of Petroleum
Hydrocarbons in Contaminated Sub-Antarctic Soil. Chemosphere, 58, 1439-1448. http://dx.doi.org/10.1016/j.chemosphere.2004.10.007
[54]
Eriksson,
M., Sodersten, E., Yu, Z., Dalhammar, G. and Mohn, W.W. (2003) Degradation of Polycyclic Aromatic Hydrocarbons
at Low Temperature under Aerobic and Nitrate-Reducing Conditions in Enrichment
Cultures from Northern Soils. Applied and
Environmental Microbiology, 69, 275-284. http://dx.doi.org/10.1128/AEM.69.1.275-284.2003
[55]
Brakstad,
O.G. and Bonaunet, K. (2006) Biodegradation of Petroleum Hydrocarbons in Seawater at Low
Temperatures (0-5 ℃) and Bacterial Communities Associated with Degradation. Biodegradation, 17, 71-82. http://dx.doi.org/10.1007/s10532-005-3342-8
[56]
Mateles,
R.I, Baruah, J.N. and Tannenbaum, S.R. (1967) Growth
of a Thermophilic Bacterium on Hydrocarbons: A New Source of Single-Cell
Protein. Science, 157, 1322-1323. http://dx.doi.org/10.1126/science.157.3794.1322
[57]
Moore,
M.A.S. and Owen, J.J.T. (1967) Thermophilic Bacterium Isolated on n-Tetradecane. Nature, 215, 1082-1083. http://dx.doi.org/10.1038/2151082a0
[58]
Abbasian, F., Lockington, R., Mallavarapu, M. and Naidu, R. (2015) A Comprehensive Review of
Aliphatic Hydrocarbon Biodegradation by Bacteria. Applied Biochemistry and Biotechnology, 176, 670-699. http://dx.doi.org/10.1007/s12010-015-1603-5
Acevedo, G.T. and McInerney, M.J. (1996) Emulsifying Activity in Thermophilic and
Extremely Thermophilic Microorganisms. Journal
of Industrial Microbiology, 16, 1-7. http://dx.doi.org/10.1007/BF01569914
[61]
Sarkar,
D., Ferguson, M., Datta, R. and Birnbaum, S. (2005) Bioremediation
of Petroleum Hydrocarbons in Contaminated Soils: Comparison of Biosolids
Addition, Carbon Supplementation, and Monitored Natural Attenuation. Environmental Pollution, 136, 1871-1895. http://dx.doi.org/10.1016/j.envpol.2004.09.025
[62]
Atlas,
R.M. and Bartha, R. (1973) Stimulated Biodegradation of Oil Slicks Using Oleophilic
Fertilizers. Environmental Science &
Technology, 7,
538-541. http://dx.doi.org/10.1021/es60078a005
[63]
Tyagi, M., Fonseca, M.M.R. and Carvalho, C.C.C.R. (2011) Bioaugmentation and
Biostimulation Strategies to Improve the Effectiveness of Bioremediation
Processes. Biodegradation, 22,
231-241. http://dx.doi.org/10.1007/s10532-010-9394-4
[64]
Floodgate,
G.D. (1995) Some Environmental Aspects of Marine Hydrocarbon
Bacteriology. Aquatic Microbial Ecology, 9, 3-11. http://dx.doi.org/10.3354/ame009003
[65]
Widada, H.N., Kasuga, K. and Yo,
T.J. (2002) Molecular Detection and Diversity of Polycyclic
Aromatic Hydrocarbon-Degrading Bacteria Isolated from Geographically Diverse
Sites. Applied Microbiology and
Biotechnology, 58, 202-209. http://dx.doi.org/10.1007/s00253-001-0880-9
[66]
Rodrigues,
D.F., Sakata, S.K., Comasseto, J.V., Bícego, M.C. and Pellizari, V.H. (2009) Diversity
of Hydrocarbon- Degrading
Klebsiella Strains Isolated from Hydrocarbon-Contaminated Estuaries. Journal of Applied Microbiology, 106,
1304-1314. http://dx.doi.org/10.1111/j.1365-2672.2008.04097.x
[67]
Kostka, J.E., Prakash, O., Overholt, W.A.,
Green, S.J., Freyer, G., Canion, A., Delgardio, J., Norton, N., Hazen, T.C. and Huettel, M. (2011) Hydrocarbon-Degrading Bacteria and the
Bacterial Community Response in Gulf of Mexico Beach Sands Impacted by the
Deepwater Horizon Oil Spill. Applied and
Environmental Microbiology, 77, 7962-7974. http://dx.doi.org/10.1128/AEM.05402-11
[68]
Habe,
H. and Omori, T. (2003) Genetics of Polycyclic Aromatic
Hydrocarbon Metabolism in Diverse Aerobic Bacteria. Bioscience, Biotechnology, and Biochemistry, 67,
225-243. http://dx.doi.org/10.1271/bbb.67.225
[69]
Whitehead,
A. (2013) Interactions between Oil-Spill Pollutants and Natural
Stressors Can Compound Ecotoxicological Effects. Integrative and Comparative Biology, 53, 635-647. http://dx.doi.org/10.1093/icb/ict080
[70]
Ramachandran,
S.D., Hodson, P.V., Khan, C.W. and Lee, K. (2004) Oil Dispersant Increases PAH Uptake by Fish Exposed to Crude Oil. Ecotoxicology and Environmental Safety,
59, 300-308. http://dx.doi.org/10.1016/j.ecoenv.2003.08.018
[71]
McCay,
D.F., Rowe, J.J., Whittier, N., Sankaranarayanan, S. and Etkin, D.S. (2004) Estimation of Potential Impacts and
Natural Resource Damages of Oil. Journal
of Hazardous Materials, 107, 11-25. http://dx.doi.org/10.1016/j.jhazmat.2003.11.013
[72]
GESAMP (1993) Joint Group of Experts on the
Scientific Aspects of Marine Pollution. Impact of Oil and Related Chemicals and Wastes on the
Marine Environment. GESAMP Reports and Studies, No. 50, London.
[73]
Ritter,
L., Solomon, K., Sibley, P., Hall, K., Keen, P., Mattu, G. and Linton, B. (2002) Sources, Pathways, and Relative Risks of
Contaminants in Surface Water and Groundwater: A Perspective Prepared for the
Walkerton Inquiry. Journal of Toxicology
and Environmental Health, Part A,
65, 1-142. http://dx.doi.org/10.1080/152873902753338572
[74]
La
Rocca, C., Conti, L., Crebelli, R., Crochi, B., Iacovella, N., Rodriguez, F.,
Turrio-Baldassarri, L. and di Domenico, A. (1996) PAH
Content and Mutagenicity of Marine Sediments from the Venice Lagoon. Ecotoxicology and Environmental Safety, 33,
236-245. http://dx.doi.org/10.1006/eesa.1996.0030
Shimada,
T. and Fujii-Kuriyama, Y. (2004) Metabolic Activation of Polycyclic Aromatic
Hydrocarbons to Carcinogens by Cytochromes P450 1A1 and 1B1. Cancer Science, 95, 1-6. http://dx.doi.org/10.1111/j.1349-7006.2004.tb03162.x
[77]
Mehdinia, A., Aghadadashi, V. and
Fumani, N.S. (2015) Origin, Distribution and
Toxicological Potential of Polycyclic Aromatic Hydrocarbons in Surface
Sediments from the Bushehr Coast, The Persian Gulf. Marine Pollution Bulletin, 90, 334-338. http://dx.doi.org/10.1016/j.marpolbul.2014.09.021
Chiou,
C.T., Mcgroddy, S.E., Kile, D.E., Survey, U.S.G. and Federal, D. (1998) Partition Characteristics of Polycyclic
Aromatic Hydrocarbons on Soils and Sediments. Environmental Science & Technology, 32, 264-269. http://dx.doi.org/10.1021/es970614c
[80]
Simpson,
C.D., Mosi, A.A., Cullen, W.R. and Reimer, K.J. (1996) Composition and Distribution of Polycyclic Aromatic Hydrocarbon
Contamination in Surficial Marine Sediments from Kitimat Harbor, Canada. Science of the
Total Environment, 181,
265-278. http://dx.doi.org/10.1016/0048-9697(95)05026-4
[81]
Reynaud,
S. and Deschaux, P. (2006) The Effects of Polycyclic Aromatic
Hydrocarbons on the Immune System of Fish: A Review. Aquatic Toxicology, 77, 229-238. http://dx.doi.org/10.1016/j.aquatox.2005.10.018
[82]
Carls,
M.G., Babcock, M.M., Harris, P.M., Irvine, G.V., Cusick, J.A. and Rice, S.D. (2001) Persistence of Oiling in Mussel Beds
after the Exxon Valdez Oil Spill. Marine
Environmental Research, 51, 167-190. http://dx.doi.org/10.1016/S0141-1136(00)00103-3
[83]
Peterson
(2001) The “Exxon Valdez” Oil Spill in Alaska: Acute, Indirect and Chronic
Effects on the Ecosystem. Advances in
Marine Biology, 39, 1-103. http://dx.doi.org/10.1016/s0065-2881(01)39008-9
[84]
Peterson,
C.H., Rice, S.D., Short, J.W., Esler, D., Bodkin, J.L., Ballachey, B.E. and Irons, D.B. (2003) Long-Term Ecosystem Response to the
Exxon Valdez Oil Spill. Science, 302,
2082-2086. http://dx.doi.org/10.1126/science.1084282
[85]
Alonso-Alvarez,
C., Pérez, C. and Velando, A. (2007) Effects
of Acute Exposure to Heavy Fuel Oil from the Prestige Spill on a Seabird. Aquatic Toxicology, 84,
103-110. http://dx.doi.org/10.1016/j.aquatox.2007.06.004
Bao,
M.T., Wang, L.N., Sun, P.Y., Cao, L.X., Zou, J. and Li, Y.M. (2012) Biodegradation of Crude Oil Using an
Efficient Microbial Consortium in a Simulated Marine Environment. Marine Pollution Bulletin, 64,
1177-1185. http://dx.doi.org/10.1016/j.marpolbul.2012.03.020
[88]
Khan,
F.I., Husain, T. and Hejazi, R. (2004) An Overview and Analysis of Site Remediation Technologies. Journal of Environmental Management, 71,
95-122. http://dx.doi.org/10.1016/j.jenvman.2004.02.003
[89]
Aburto-Medina,
A., Adetutu, E.M., Aleer, S., Weber, J., Patil,
S.S., Sheppard, P.J., Ball, A.S. and Juhasz, A.L. (2015)
Comparison of Indigenous and Exogenous Microbial Populations during Slurry
Phase Biodegradation of Long-Term Hydrocarbon-Contaminated Soil. Biodegradation, 23, 813-822. http://dx.doi.org/10.1007/s10532-012-9563-8
[90]
Harayama, S.,
Kishira, H., Kasai, Y. and Shutsubo, K. (1999) Petroleum
Biodegradation in Marine Environments. Journal
of Molecular Microbiology and Biotechnology, 1, 63-70.
[91]
Murado,
M.A., Vázquez, J.A., Rial, D. and Beiras, R. (2011) Dose-Response
Modelling with Two Agents: Application to the Bioassay of Oil and Shoreline Cleaning
Agents. Journal of Hazardous Materials, 185,
807-817. http://dx.doi.org/10.1016/j.jhazmat.2010.09.092
[92]
Fucik,
K.W. and Carr, K.A. (1994) Dispersed Oil Toxicity Tests with Biological Species Indigenous
to the Gulf of Mexico. Continental Shelf Associates, Inc., US
Department of the Interior, New Orleans.
[93]
Beiras,
E.H.R., Seaman, M.N.L. and France, A. (1999) The Assessment of Marine Pollution. Bioassays with Bivalve Embryos
and Larvae. Advances in Marine Biology,
37, 1-178. http://dx.doi.org/10.1016/S0065-2881(08)60428-9
[94]
Gundersen,
D.T., Kristanto, S.W., Curtis, L.R., Al-Yakoob, S.N.,
Metwally, M.M. and Al-Ajmi, D. (1996) Subacute Toxicity of the Water-Soluble Fractions of Kuwait
Crude Oil and Partially Combusted Crude Oil on Menidia beryllina and Palaemonetes
pugio. Archives of Environmental
Contamination and Toxicology, 31, 1-8. http://dx.doi.org/10.1007/BF00203901
[95]
Blenkinsopp,
S.A., Sergy, G., Wohlgeschaffent, K.D.O.E.G. and Li, K. (1997) Toxicity of the Weathered Crude Oil
Used at the Newfoundland Offshore Burn Experiment (NOBE) and the Resultant Burn
Residue. Spill Science & Technology
Bulletin, 3,
277-280. http://dx.doi.org/10.1016/S1353-2561(97)00028-5
[96]
Wolfe,
M.F., Schwartz, G.J.B., Singaram, S. and Mielbrecht, E.E. (1999) Influence of Dispersants on the Bioavailability and Trophic
Transfer of Phenanthrene to Algae and Rotifers. Aquatic Toxicology, 48, 13-24. http://dx.doi.org/10.1016/S0166-445X(99)00028-4
[97]
Zhu,
X., Venosa, A.D., Suidan, M.T. and Lee, K. (2001) Guidelines
for the Bioremediation of Marine Shorelines and Freshwater Wetlands. US
Environmental Protection Agency, Cincinnati.
[98]
Cantagallo, C., Milanelli, J.C.C. and Dias-Brito, D. (2007) Limpeza de ambientes costeiros brasileiros
contaminados por petróleo: Uma revisao. Pan-American
Journal of Aquatic Sciences, 2, 1-12.
[99]
Patrick,
A., Craig, D.L., Sena, E., Magalhaes, L. and Canielas, M. (2012) Técnicas
de limpeza de vazamentos de petroleo em alto mar. Cadernos de Graduacao—Ciências
Exatas e Tecnológicas, 1,
75-86.
Atlas,
R.M. and Hazen, T.C. (2011) Oil Biodegradation and Bioremediation: A Tale of the Two Worst
Spills in U.S. History. Environmental
Science & Technology, 45, 6709-6715. http://dx.doi.org/10.1021/es2013227
[102]
El
Fantroussi, S. and Agathos, S.N. (2005) Is Bioaugmentation a Feasible Strategy for Pollutant Removal
and Site Remediation? Current Opinion in
Microbiology, 8, 268-275. http://dx.doi.org/10.1021/es2013227
Xia,
W.X., Li, J.C., Zheng, X.L., Bi, X.J. and Shao, J.L. (2006) Enhanced Biodegradation of Diesel Oil in Seawater Supplemented
with Nutrients. Engineering in Life
Sciences, 6,
80-85. http://dx.doi.org/10.1002/elsc.200620113
[107]
Zahed,
M.A., Aziz, H.A., Isa, M.H. and Mohajeri, L. (2010) Enhancement
Biodegradation of n-Alkanes from Crude Oil Contaminated Seawater. International Journal of Environmental
Research, 4,
655-664.
[108]
Nikolopoulou, M., Eickenbusch, P., Pasadakis,
N., Venieri, D. and Kalogerakis, N. (2013) Microcosm Evaluation of Autochthonous Bioaugmentation to Combat
Marine Oil Spills. New Biotechnology, 30,
734-742. http://dx.doi.org/10.1016/j.nbt.2013.06.005
[109]
National Research Council (1994) Alternatives
for Ground Water Cleanup. National Academy Press, Washington DC.
[110]
Pezeshki, S.R.,
Hester, M.W., Lin, Q. and Nyman, J.A. (2000) The Effects of Oil Spill and Clean-Up on Dominant US Gulf Coast
Marsh Macrophytes: A Review. Environmental
Pollution, 108,
129-139. http://dx.doi.org/10.1016/S0269-7491(99)00244-4
[111]
Hambrick,
G.A., Delaune, R.D. and Patrick, W.H. (1980) Effect of Estuarine Sediment pH and Oxidation-Reduction
Potential on Microbial Hydrocarbon Degradation. Applied and Environmental Microbiology, 40, 365-369.
Krumbolz,
L.R., Caldwell, M.E. and Suflita, J.M. (1996) Biodegradation of “BTEX” Hydrocarbons under Anaerobic
Conditions. In: Crawford, R.L. and Crawford, D.L., Eds., Bioremediation: Principles and Applications,
Cambridge University Press, New York, 61-99. http://dx.doi.org/10.1017/CBO9780511608414.005
[114]
Táncsics,
A., Szoboszlay, S., Szabó, I., Farkas, M., Kovács, B., Kukolya, J., Mayer, Z. and Kriszt, B. (2012) Quantification of Subfamily I.2.C
Catechol 2,3-Dioxygenase mRNA Transcripts in Groundwater Samples of an
Oxygen-Li- mited
BTEX-Contaminated Site. Environmental
Science & Technology, 46, 232-240. http://dx.doi.org/10.1021/es201842h
[115]
Gallego,
J.R., González-Rojas, E., Peláez, A.I., Sánchez, J., García-Martínez, M.J.,
Ortiz, J.E., Torres, T. and Llamas, J.F. (2006) Natural
Attenuation and Bioremediation of Prestige Fuel Oil along the Atlantic Coast of Galicia (Spain). Organic Geochemistry, 37, 1869-1884. http://dx.doi.org/10.1016/j.orggeochem.2006.07.022
[116]
McKew,
B.A., Coulon, F., Yakimov, M.M., Denaro, R., Genovese, M., Smith, C.J., Osborn,
A.M., Timmis, K.N. and McGenity, T.J. (2007) Efficacy of Intervention Strategies for Bioremediation of Crude
Oil in Marine Systems and Effects on Indigenous Hydrocarbonoclastic Bacteria. Environmental Microbiology, 9,
1562-1571. http://dx.doi.org/10.1111/j.1462-2920.2007.01277.x
[117]
Rahman,
K.S.M., Thahira-Rahman, J., Lakshmanaperumalsamy, P. and Banat, I.M. (2002) Towards Efficient Crude Oil Degradation
by a Mixed Bacterial Consortium. Bioresource
Technology, 85,
257-261. http://dx.doi.org/10.1016/S0960-8524(02)00119-0
[118]
Nyer, E.K., Pauyne, F. and Sutherson, S. (2003) Discussion od Environment vs. Bacteria or Let’s Play “Name tha
Bacteria”. Biotechnology and
Bioengineering, 23, 36-45.
[119]
Mnif, I.,
Mnif, S., Sahnoun, R., Martouf, S., Ayedi, Y., Ellouze-Chaabouni, S. and
Ghribi, D. (2015) Biodegradation of Diesel Oil by a Novel Microbial Consortium:
Comparison between Co-Inoculation with Biosurfactants-Producing Strain and
Exogenously Added Biosurfactants. Environmental
Science and Pollution Research, 22, 14852-14861. http://dx.doi.org/10.1007/s11356-015-4488-5
[120]
Roane,
T.M., Josephson, K.L. and Pepper, I.L. (2001) Dual-Bioaugmentation Strategy to Enhance Remediation of Cocontaminated Soil
Dual-Bioaugmentation Strategy to Enhance Remediation of Cocontaminated Soil. Applied and Environmental Microbiology, 67,
3208-3215. http://dx.doi.org/10.1128/AEM.67.7.3208-3215.2001
[121]
Van
Veen, J.A., Van Overbeek, L.S. and Van Elsas, J.D. (1997) Fate and Activity of Microorganisms Introduced into Soil. Microbiology and Molecular Biology Reviews, 61,
121-135.
[122]
Adams, G.O., Fufeyim,
P.T., Okoro, S.E. and Ehinomen, I. (2015) Bioremediation, Biostimulation and Bioaugmention: A
Review. International Journal of Environmental
Bioremediation & Biodegradation, 3, 28-29.
[123]
Gentry, T., Rensing, C. and Pepper, I. (2004) New Approaches for Bioaugmentation as a
Remediation Technology. Critical Reviews
in Environmental Science and Technology, 34, 447-494. http://dx.doi.org/10.1080/10643380490452362
[124]
Goldstein,
R.M., Mallory, L.M. and Alexander, M. (1985) Reasons for Possible Failure of Inoculation to Enhance Biodegradation. Applied and Environmental Microbiology, 50,
977-983.
[125]
Orcutt, B.N., Joye, S.B., Kleindienst, S.,
Knittel, K., Ramette, A., Reitz, A., Samarkin, V., Treude, T. and Boetius, A. (2010) Impact of Natural Oil and Higher
Hydrocarbons on Microbial Diversity, Distribution, and Activity in Gulf of
Mexico Cold-Seep Sediments. Deep Sea
Research Part II: Topical Studies in
Oceanography, 57, 2008-2021. http://dx.doi.org/10.1016/j.dsr2.2010.05.014
[126]
Thavasi,
R., Jayalakshmi, S. and Banat, I.M. (2011) Effect of Biosurfactant and Fertilizer on Biodegradation of
Crude Oil by Marine Isolates of Bacillus
megaterium, Corynebacterium kutscheri and Pseudomonas aeruginosa. Bioresource Technology, 102,
772-778. http://dx.doi.org/10.1016/j.biortech.2010.08.099
Venosa,
A.D., Campo, P. and Suidan, M.T. (2010) Biodegradability
of Lingering Crude Oil 19 Years after the Exxon Valdez Oil Spill. Environmental Science & Technology, 44,
7613-7621. http://dx.doi.org/10.1021/es101042h
[129]
Nikolopoulou,
M. and Kalogerakis, N. (2009) Biostimulation Strategies for Fresh and
Chronically Polluted Marine Environments with Petroleum Hydrocarbons. Journal of Chemical Technology and
Biotechnology, 84, 802-807. http://dx.doi.org/10.1002/jctb.2182
[130]
Lubchenco, J., McNutt, M., Lehr, B., Sogge,
M., Miller, M., Hammond, S. and Conner, W. (2010) Deepwater Horizon/BP Oil Budget: What Happened to the
Oil? Oil Budget Calculator Science and Engineering Team (US),
Washington DC.
[131]
Tate, P.T., Shin,
W.S., Pardue, J.H. and Jackson, W.A. (2011) Bioremediation of an Experimental Oil Spill in a Coastal
Louisiana Salt Marsh. Water, Air, &
Soil Pollution, 223, 1115-1123. http://dx.doi.org/10.1007/s11270-011-0929-z
[132]
Warr, L.N., Friese, A., Schwarz, F., Schauer,
F., Portier, R.J., Basirico, L.M. and Olson, G.M. (2013) Bioremediating Oil Spills in Nutrient Poor Ocean
Water Using Fertilized Clay Mineral Flakes: Some Experimental Constraints. Biotechnology Research International, 2013,
Article ID:
704806. http://dx.doi.org/10.1155/2013/704806
[133]
Lindstrom,
J.E., Prince, R.C., Clark, J.C., Grossman, M.J., Yeager, T.R., Braddock, J.F. and Brown, E.J. (1991) Microbial Populations and Hydrocarbon
Biodegradation Potentials in Fertilized Shoreline Sediments Affected by the T/V
Exxon Valdez Oil Spill. Applied and
Environmental Microbiology, 57, 2514-2522.
Pritchard,
P.H., Mueller, J.G., Rogers, J.C., Kremer, F.V. and Glaser, J.A. (1992) Oil Spill Bioremediation: Experiences,
Lessons and Results from the Exxon Valdez Oil Spill in Alaska. Biodegradation, 3, 315-335. http://dx.doi.org/10.1007/BF00129091
[136]
Button,
D.K., Robertson, B.R., McIntosh, D. and Jüttner, F. (1992) Interactions between Marine Bacteria and Dissolved-Phase and
Beached Hydrocarbons after the Exxon Valdez Oil Spill. Applied and Environmental Microbiology, 58, 243-251.
[137]
Koren, O.,
Knezevic, V., Ron, E.Z. and Rosenberg, E. (2003) Petroleum Pollution Bioremediation Using Water-Insoluble Uric
Acid as the Nitrogen Source Petroleum Pollution Bioremediation Using
Water-Insoluble Uric Acid as the Nitrogen Source. Applied and Environmental Microbiology, 69, 6337-6339. http://dx.doi.org/10.1128/AEM.69.10.6337-6339.2003
[138]
Nikolopoulou,
M. and Kalogerakis, N. (2008) Enhanced Bioremediation of Crude Oil
Utilizing Lipophilic Fertilizers Combined with Biosurfactants and Molasses. Marine Pollution Bulletin, 56,
1855-1861. http://dx.doi.org/10.1016/j.marpolbul.2008.07.021