全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

不同学习速率下NMF盲源分离算法
Blind Source Separation Algorithms Based on Nonnegative Matrix Factorization Using Different Learning Rates

DOI: 10.12677/HJWC.2015.55013, PP. 91-97

Keywords: 非负矩阵分解,盲分离,学习速率,误差函数
Non-Negative Matrix Factorization (NMF)
, Blind Source Separation (BSS), Learning Rates, Error Function

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于非负矩阵分解(NMF)的盲源分离算法采用乘性更新规则,但如何选择学习速率选择以及其对算法性能影响没有详细研究。对此,本文推导给出了选择不同学习速率时各种迭代更新公式,并对各种组合进行了大量计算机仿真实验,通过比较分析发现,有效的迭代更新公式的分母必须包含误差函数信息,分子分母的项数应尽可能平衡。
The iterative multipliable update formulas are used in blind source separation algorithms based on non-negative matrix factorization (NMF). However, the methods to select the learning rates and affect algorithms’ performance remain to be researched. This paper gives a derivation of different learning rates when selecting various iterative update formulas. A lot of computer simulations about these combinations are carried, and they show that a denominator of the effective iterative update formulas must contain information of the error function. In addition, its terms of denomi-nator and numerator should be balanced.

References

[1]  Lee, D.D. and Seung, H.S. (1999) Learning the parts of objects by non-negative matrix factorization. Nature, 401, 788-791.
[2]  李乐, 章毓晋 (2008) 非负矩阵分解算法综述. 电子学报, 36, 737-743.
[3]  马建仓, 牛奕龙, 陈海洋 (2006) 盲信号处理. 国防工业出版社, 北京.
[4]  殷海青, 刘红卫 (2010) 一种基于L1稀疏正则化和非负矩阵分解的盲源信号分离新算法. 西安电子科技大学学报, 37, 835-841.
[5]  Zdunek, R. and Cichocki, A. (2007) Nonnegative matrix factorization with constrained second-order optimization. Signal Processing, 87, 1904-1916.
http://dx.doi.org/10.1016/j.sigpro.2007.01.024
[6]  张倩 (2013) 水声信号盲源分离方法研究. 硕士论文, 哈尔滨工业大学, 哈尔滨.
[7]  卢宏, 赵知劲, 杨小牛 (2011) 基于行列式和稀疏性约束的NMF的欠定盲分离方法. 计算机应用, 31, 553-555+558.
[8]  Wang, S., et al. (2014) A K-L divergence constrained sparse NMF for hyperspectral unmixing signal. Proceedings of 2014 IEEE International Conference on Security, Pattern Analysis, and Cybernetics, Wuhan, 18-19 October 2014, 223-228.
http://dx.doi.org/10.1109/SPAC.2014.6982689
[9]  张宇飞 (2010) 加稀疏约束的非负矩阵分解. 硕士论文, 大连理工大学, 大连.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133