As a trial, though thinking of general concepts, of our
scientific challenge, we consider whether the Charge-Parity-Time (CPT) symmetry
can be almighty even in a photon. This is the main aim of this paper. In what
follows, we discuss our argumentations dividing the conjecture into two parts.
Rotational invariance of physical laws is an accepted principle in Newton’s theory. We show that it leads
to an additional constraint on local realistic theories with mixture of
ten-particle Greenberger- Horne-Zeilinger state.
This new constraint rules out such theories even in some situations in which
standard Bell inequalities allow for explicit construction of such theories.
This says new hypothesis to the number of ten. Next, it turns out
Zermelo-Fraenkel set theory has contradictions. Further, the von Neumann’s theory has a contradiction by using ±1/. We solve the problem of von Neumann’s theory while escaping from all contradictions made by
Zermelo-Fraenkel set theory, simultaneously. We assume that the results of measurements
are . We assume that only and are possible. This situation meets a structure
made by Zermelo-Fra- enkel set theory with the axiom of choice. We result in the
fact that it may be kept to perform the Deutsch-Jozsa algorithm even in the
macroscopic scale because zero does not exist in this case. Our analysis agrees
with recent experimental report.
References
[1]
Yokota, K., Yamamoto, T., Koashi, M. and Imoto, N. (2009) Direct Observation of Hardy’s Paradox by Joint
Weak Measurement with an Entangled Photon Pair. New Journal of Physics, 11, Article
ID: 033011. http://dx.doi.org/10.1088/1367-2630/11/3/033011
[2]
Kostelecky, V.A. and Mewes, M. (2013)
Constraints on Relativity Violations from
Gamma-Ray Bursts. Physical Review Letters, 110, Article ID: 201601. http://dx.doi.org/10.1103/PhysRevLett.110.201601
[3]
Nagata, K., Laskowski, W., Wiesniak, M. and Zukowski, M. (2004) RotationalInvariance as an Additional Constraint on Local Realism. Physical Review Letters, 93, Article
ID: 230403. http://dx.doi.org/10.1103/PhysRevLett.93.230403
[4]
Nagata, K. and Ahn, J. (2008) Violation of Rotational Invariance of Local Realistic Models with Two
Settings. Journal of the Korean Physical Society, 53, 2216.
[5]
Nagata, K. and Ahn, J. (2008) The Conflict between Bell-Zukowski Inequality and Bell-Mermin
Inequality. Modern Physics Letters A, 23, 2967. http://dx.doi.org/10.1142/S0217732308028727
[6]
Greenberger, D.M., Horne, M.A. and Zeilinger, A. (1989) Going Beyond Bell’s Theorem. In:Kafatos, M., Ed., Bell’s Theorem, Quantum Theory and Conceptions of the
Universe, Kluwer Academic, Dordrecht, 69-72. http://dx.doi.org/10.1007/978-94-017-0849-4_10
[7]
Nagata, K. (2007) Multipartite
Omnidirectional Generalized Bell Inequality. Journal
of Physics A: Mathematical
and Theoretical, 40, 13101. http://dx.doi.org/10.1088/1751-8113/40/43/017
Peres, A.(1993) Quantum Theory: Concepts and Methods. Kluwer Academic, Dordrecht.
[10]
Einstein, A.,
Podolsky, B. and Rosen, N. (1935) Can
Quantum-Mechanical Description of Physical Reality Be Considered Complete? Physical Review, 47, 777. http://dx.doi.org/10.1103/PhysRev.47.777
[11]
Bell, J.S. (1964) On the Einstein Podolsky Rosen Paradox. Physics, 1,
195-200.
[12]
Leggett, A.J. (2003) Nonlocal Hidden-Variable Theories and Quantum Mechanics: An
Incompatibility Theorem. Foundations of Physics, 33,
1469-1493. http://dx.doi.org/10.1023/A:1026096313729
[13]
Groblacher, S., Paterek, T., Kaltenbaek, R., Brukner, C.,
Zukowski, M., Aspelmeyer,
M. and Zeilinger, A.
(2007) An Experimental Test of Non-Local Realism. Nature, 446,
871-875. http://dx.doi.org/10.1038/nature05677
[14]
Paterek, T.,
Fedrizzi, A.,
Groblacher, S.,
Jennewein, T., Zukowski, M.,
Aspelmeyer, M. and Zeilinger, A.
(2007) Experimental Test of Nonlocal Realistic Theories without the Rotational
Symmetry Assumption. Physical Review Letters, 99, Article ID: 210406. http://dx.doi.org/10.1103/PhysRevLett.99.210406
[15]
Branciard, C., Ling, A., Gisin, N., Kurtsiefer, C., Lamas-Linares, A. and Scarani, V. (2007) Experimental Falsification of Leggett’s
Nonlocal Variable Model. Physical Review Letters, 99, Article ID: 210407. http://dx.doi.org/10.1103/PhysRevLett.99.210407
Scarani, V. and Gisin, N. (2001) Quantum Communication between N Partners and Bell’s Inequalities. Physical
Review Letters, 87, Article ID: 117901. http://dx.doi.org/10.1103/PhysRevLett.87.117901
[19]
Brukner, C., Zukowski, M., Pan, J.-W.
and Zeilinger, A.
(2004) Bell’s Inequalities and Quantum Communication Complexity. Physical
Review Letters, 92, Article ID: 127901. http://dx.doi.org/10.1103/PhysRevLett.92.127901
[20]
Mermin, N.D. (1990) Extreme Quantum Entanglement in a Superposition of Macroscopically
Distinct States. Physical Review Letters, 65, 1838-1840. http://dx.doi.org/10.1103/PhysRevLett.65.1838
[21]
Roy,
S.M. and Singh, V. (1991) Tests of
Signal Locality and Einstein-Bell Locality for Multiparticle Systems. Physical
Review Letters, 67, 2761-2764. http://dx.doi.org/10.1103/PhysRevLett.67.2761
[22]
Ardehali, M. (1992) Bell Inequalities with a Magnitude of Violation That Grows
Exponentially with the Number of Particles. Physical Review A, 46,
5375-5378. http://dx.doi.org/10.1103/PhysRevA.46.5375
Werner, R.F. and Wolf, M.M. (2001) All-Multipartite Bell-Correlation Inequalities for Two
Dichotomic Observables per Site. Physical Review A, 64, Article ID: 032112. http://dx.doi.org/10.1103/PhysRevA.64.032112
[25]
Werner, R.F. and Wolf, M.M. (2001) Bell Inequalities and Entanglement. Quantum Information & Computation, 1, 1-25.
[26]
Zukowski, M.
and Brukner,
C. (2002) Bell’s Theorem for General N-Qubit
States. Physical
Review Letters, 88, Article ID: 210401.
[27]
Zermelo-Fraenkel Set Theory—Wikipedia, the Free Encyclopedia.
[28]
Abian, A. (1965)
The Theory of Sets and Transfinite Arithmetic. W. B. Saunders, Philadelphia.
[29]
Abian, A. and LaMacchia, S. (1978) On the Consistency and Independence of Some
Set-Theoretical Axioms. Notre
Dame Journal of Formal Logic, 19, 155-158. http://dx.doi.org/10.1305/ndjfl/1093888220
[30]
Devlin, K. (1996) The Joy of Sets. Springer, New York.
[31]
Fraenkel,
A.,
Bar-Hille, Y. and Levy, A. (1973) Foundations of Set Theory. Fraenkel’s
Final Word on ZF and ZFC, North Holland.
[32]
Hatcher, W. (1982) The Logical Foundations of Mathematics. Pergamon, London.
[33]
Jech, T. (2003) Set Theory. The Third Millennium Edition, Revised and
Expanded, Springer, Berlin.
[34]
Kunen, K. (1980) Set Theory: An Introduction to Independence
Proofs. Elsevier, Amsterdam.
[35]
Montague, R. (1961) “Semantic Closure and Non-Finite Axiomatizability” in
Infinistic Methods. Pergamon, London, 45-69.
[36]
Suppes, P. (1972) Axiomatic Set Theory. Dover Reprint. Perhaps the
Best Exposition of ZFC before the Independence of AC and the Continuum
Hypothesis, and the Emergence of Large Cardinals. Includes Many Theorems.
[37]
Takeuti, G.
and Zaring, W.M. (1971)
Introduction to Axiomatic Set Theory. Springer Verlag, New York.
[38]
Tarski, A. (1939) On
Well-Ordered Subsets of Any Set. Fundamenta
Mathematicae, 32, 176-183.
[39]
Tiles, M. (2004) The Philosophy of Set Theory. Dover Reprint.
Weak on Metatheory; the Author Is Not a Mathematician.
[40]
Tourlakis, G. (2003)
Lectures in Logic and Set Theory. Volume 2, Cambridge University Press, Cambridge.
[41]
van Heijenoort, J. (1967) From Frege to Godel: A Source Book in
Mathematical Logic, 1879-1931. Harvard University Press, Cambridge.
[42]
Zermelo, E.
(1908) Untersuchungen uber die Grundlagen der Mengenlehre I. Mathematische Annalen, 65, 261-281. http://dx.doi.org/10.1007/BF01449999
[43]
van Heijenoort, J. (1967) Investigations in the Foundations of Set
Theory. In: van Heijenoort, J.,
Ed., From Frege to Godel: A Source Book in Mathematical Logic,
1879-1931, Harvard University Press, Cambridge, MA, 199-215.
[44]
Zermelo, E.
(1930) Uber Grenzzablen und Mengenbereiche. Fundamenta Mathematicae, 16, 29-47.
[45]
Nagata, K.
and Nakamura, T. (2011) Does
Singleton Set Meet Zermelo-Fraenkel Set Theory with the Axiom of Choice? Advanced
Studies in Theoretical Physics, 5, 57.
[46]
Nagata, K. and Nakamura, T. (2010) Can von Neumann’s Theory Meet the Deutsch-Jozsa Algorithm? International
Journal of Theoretical Physics, 49, 162-170. http://dx.doi.org/10.1007/s10773-009-0189-5
[47]
Nagata, K.,
Ren, C.-L.
and Nakamura, T. (2011) Whether Quantum Computation Can Be Almighty. Advanced Studies in Theoretical Physics,
5, 1-14.
Nielsen,
M.A. and Chuang, I.L. (2000) Quantum
Computation and Quantum Information. Cambridge University Press, Cambridge.
[51]
Gudder, S.P. (1980) Proposed Test for a Hidden Variables Theory. International Journal of
Theoretical Physics, 19, 163-168. http://dx.doi.org/10.1007/BF00669767
Zimba,
J.R. and Clifton, R.K.
(1998) Valuations on Functionally Closed Sets of Quantum
Mechanical Observables and von Neumann’s “No-Hidden-Variables” Theorem. In: Dieks, D. and Vermaas, P.,
Eds., The Modal Interpretation of Quantum Mechanics, Kluwer Academic Publishers, Dordrecht, 69-101.
Aspect, A.,
Dalibard, J. and Roger, G.
(1982) Experimental Test of Bell’s Inequalities Using Time-Varying Analyzers. Physical
Review Letters, 49, 1804-1807. http://dx.doi.org/10.1103/PhysRevLett.49.1804
[56]
Hellmuth, T., Walther, H., Zajonc, A. and Schleich, W. (1987) Delayed-Choice Experiments in Quantum
Interference. Physical
Review A, 35, 2532-2541. http://dx.doi.org/10.1103/PhysRevA.35.2532