全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Quaternion Solution of the Motion in a Central Force Field Relative to a Rotating Reference Frame

DOI: 10.4236/wjm.2015.55008, PP. 71-79

Keywords: Quaternion, Rotating Reference Frame, Foucault Pendulum Motion, Keplerian Motion

Full-Text   Cite this paper   Add to My Lib

Abstract:

The paper presents a quaternion approach of giving a closed form solution of the motion in a central force field relative to a rotating reference frame. This new method involves two quaternion operators: the first one transforms the motion from a non-inertial reference frame to a inertial one with a very significant consequence of vanishing all the non-inertial terms (Coriolis and centripetal forces); the second quaternion operator provides the solution of the motion in the noninertial reference frame by applying it to the solution in the inertial reference frame. This process will govern the inverse transformation of the motion and is proved on two particular cases, the Foucault Pendulum and Keplerian motions problems relative to rotating reference frames.

References

[1]  Hamilton, W.R. (2000) On Quaternions, or on a New System of Imaginaries in Algebra. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, Vols. xxv-xxxvi, No. 3rd Series, 92 p.
[2]  Darboux, G. (1887) Lecons sur la theorie generale des surfaces et les applications geometriques du calcul infinitesimal. Gauthier-Villars, Paris.
[3]  Condurache, D. and Martinusi, V. (2010) Quaternionic Exact Solution to the Relative Orbital Motion Problem. Journal of Guidance, Control, and Dynamics, 33, 1035-1047.
http://dx.doi.org/10.2514/1.47782
[4]  Angeles, J. (1988) Rational Kinematics. (Springer Tracts in Natural Philosophy, Vol. 34). Springer-Verlag, New York.
[5]  Condurache, D. and Martinusi, V. (2008) Foucault Pendulum-Like Problems: A Tensorial Approach. International Journal of Non-Linear Mechanics, 43, 743-760.
http://dx.doi.org/10.1016/j.ijnonlinmec.2008.03.009
[6]  Condurache, D. and Martinusi, V. (2007) Kepler’s Problem in Rotating Reference Frames; Part 1: Prime Integrals, Vectorial Regularization. Journal of Guidance, Control and Dynamics, 30, 192-200.
http://dx.doi.org/10.2514/1.20466
[7]  Condurache, D. and Martinusi, V. (2007) A Complete Closed Form Vectorial Solution to the Kepler Problem. Meccanica, 42, 465-476.
http://dx.doi.org/10.1007/s11012-007-9065-7

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133