Background: The temporomandibular joint (TMJ) is a bilateral synovial
joint between the mandible and the temporal bone of the skull. TMJ disorders
(TMDs) are a set of complicated and poorly understood clinical conditions, in
which TMDs are associated with a number of symptoms including pain and limited
jaw movement. The increasing scientific evidence suggests that genetic factors
play a significant role in the pathology of TMDs. However, the underlying
mechanism of TMDs remains largely unknown. Objective: The study aimed to determine
the associated genes to TMDs in humans and animals. Methods: The literature
search was conducted through databases including Medline (Ovid), EMBASE (Ovid),
and PubMed (NLM) by using scientific terms for TMDs and genetics in March 2015.
Additional studies were identified by searching bibliographies of highly relevant articles and Scopus (Elsevier). Results:
Our systematic analyses identified 31 articles through literature
searches. A total of 112 genes were identified to be significantly and
specifically associated with TMDs. Conclusion: Our systematic review provides a
list of accurate genes associated with TMDs and suggests a genetic contribution
to the pathology of TMDs.
References
[1]
Tanaka, E.,
Detamore, M.S. and Mercuri, L.G.
(2008) Degenerative Disorders of the Temporomandibular Joint: Etiology,
Diagnosis, and Treatment. Journal of
Dental Research, 87, 296-307. http://dx.doi.org/10.1177/154405910808700406
[2]
Shaffer, S.M.,
Brismee, J.M.,
Sizer, P.S. and Courtney, C.A.
(2014) Temporomandibular Disorders. Part 1: Anatomy and Examination/Diagnosis. The Journal of Manual & Manipulative Therapy, 22,
2-12. http://dx.doi.org/10.1179/2042618613Y.0000000060
[3]
Mundt, T.,
Mack, F.,
Schwahn, C.,
Bernhardt, O.,
Kocher, T., et al. (2008) Association between
Sociodemographic, Behavioral, and Medical Conditions and Signs of Temporomandibular
Disorders across Gender: Results of the Study of Health in Pomerania (SHIP-0). The International Journal of Prosthodontics, 21,
141-148.
[4]
Leboeuf-Yde, C., Nielsen, J., Kyvik, K.O., Fejer, R.
and Hartvigsen, J. (2009) Pain in the Lumbar, Thoracic or Cervical
Regions: Do Age and Gender Matter? A Population-Based Study of 34,902 Danish Twins
20-71 Years of Age. BMC Musculoskeletal
Disorders, 10, 39. http://dx.doi.org/10.1186/1471-2474-10-39
[5]
Magalhaes, B.G.,
de-Sousa, S.T.,
de Mello, V.V.,
da-Silva-Barbosa, A.C., de-Assis-Morais, M.P., et al. (2014) Risk Factors for Temporomandibular Disorder: Binary Logistic Regression
Analysis. Medicina Oral Patologia Oral y
Cirugia Bucal, 19, e232-e236. http://dx.doi.org/10.4317/medoral.19434
[6]
Dworkin, S.F.,
Huggins, K.H.,
LeResche, L.,
Von Korff, M.,
Howard, J., et al. (1990) Epidemiology of Signs and Symptoms
in Temporomandibular Disorders: Clinical Signs in Cases and Controls. The Journal of the American Dental
Association, 120, 273-281. http://dx.doi.org/10.14219/jada.archive.1990.0043
[7]
Bagis, B.,
Ayaz, E.A.,
Turgut, S.,
Durkan, R. and Ozcan, M.
(2012) Gender Difference in Prevalence of Signs and Symptoms of
Temporomandibular Joint Disorders: A Retrospective Study on 243 Consecutive
Patients. International Journal of Medical Sciences, 9,
539-544. http://dx.doi.org/10.7150/ijms.4474
[8]
Wadhwa, S.,
Embree, M.,
Ameye, L. and Young, M.F.
(2005) Mice Deficient in Biglycan and Fibromodulin as A Model for
Temporomandibular Joint Osteoarthritis. Cells Tissues Organs, 181, 136-143. http://dx.doi.org/10.1159/000091375
[9]
Oakley, M. and Vieira, A.R.
(2008) The Many Faces of the Genetics Contribution to Temporomandibular Joint
Disorder. Orthodontics & Craniofacial
Research, 11, 125-135. http://dx.doi.org/10.1111/j.1601-6343.2008.00426.x
[10]
Fillingim, R.B.,
Wallace, M.R.,
Herbstman, D.M.,
Ribeiro-Dasilva, M. and Staud, R.
(2008) Genetic Contributions to Pain: A Review Of Findings in Humans. Oral Diseases, 14, 673-682. http://dx.doi.org/10.1111/j.1601-0825.2008.01458.x
[11]
Smith, S.B.,
Mir, E.,
Bair, E.,
Slade, G.D.,
Dubner, R., et al. (2013) Genetic Variants
Associated with Development of TMD and Its Intermediate Phenotypes: The Genetic
Architecture of TMD in the OPPERA Prospective Cohort Study. Journal of Pain, 14, T91-T101.e3. http://dx.doi.org/10.1016/j.jpain.2013.09.004
[12]
Davlin, S.L. and VonVille, H.M. (2012) Canine Rabies Vaccination and Domestic
Dog Population Characteristics in the Developing World: A Systematic Review. Vaccine, 30, 3492-3502. http://dx.doi.org/10.1016/j.vaccine.2012.03.069
[13]
Huang, B.,
Takahashi, K.,
Sakata, T.,
Kiso, H.,
Sugai, M., et al. (2011) Increased Risk of
Temporomandibular Joint Closed Lock: A Case-Control Study of ANKH
Polymorphisms. PLoS ONE, 6,
e25503. http://dx.doi.org/10.1371/journal.pone.0025503
[14]
Matsumoto, T.,
Tojyo, I.,
Kiga, N.,
Hiraishi, Y. and Fujita, S.
(2008) Expression of ADAMTS-5 in Deformed Human Temporomandibular Joint Discs. Histology and Histopathology, 23,
1485-1493.
[15]
Li, Y.J., Cai, H.X., Fang, W.,
Meng, Q.G., Li, J., et al. (2014) Fibroblast Growth Factor 2
Involved in the Pathogenesis of Synovial Chondromatosis of Temporomandibular
Joint. Journal of Oral Pathology & Medicine, 43,
388-394. http://dx.doi.org/10.1111/jop.12146
[16]
Mutlu, N.,
Erdal, M.E.,
Herken, H.,
Ozkaya, M.,
Erdal, N.,
Oz, G., et al. (2005) Monoamine Oxidase-A Gene Promoter Polymorphism
in Temporomandibular Joint Pain and Dysfunction. Pain Clinics, 17, 39-44.
[17]
Planello, A.C.,
Campos, M.I.,
Meloto, C.B.,
Secolin, R.,
Rizatti-Barbosa, C.M., et al. (2011) Association of Matrix Metalloproteinase
Gene Polymorphism with Temporomandibular Joint Degeneration. European Journal of Oral Sci- ences, 119, 1-6. http://dx.doi.org/10.1111/j.1600-0722.2010.00803.x
[18]
Ribeiro-Dasilva, M.C., Peres Line, S.R., dos Santos, M.C.L.G., Arthuri, M.T., Hou, W., Fillingim, R.B., et al.
(2009)
Estrogen Receptor-α Polymorphisms and Predisposition to TMJ Disorder. Journal of Pain, 10, 527-533. http://dx.doi.org/10.1016/j.jpain.2008.11.012
[19]
Kim, B.S.,
Kim, Y.K.,
Yun, P.Y.,
Lee, E. and Bae, J.
(2010) The Effects of Estrogen Receptor α Polymorphism
on the Prevalence of Symptomatic Temporomandibular Disorders. Journal of Oral and Maxillofacial Surgery, 68,
2975-2979. http://dx.doi.org/10.1016/j.joms.2010.02.023
[20]
Etoz, O.A.,
Erdal, M.E.,
Herken, H.,
Bayazit, Y.A. and Mutlu, M.N. (2006) Lack
of Association between the 308GA Polymorphism of the Tumor Necrosis Factor α Gene and Temporomandibular Dysfunction. Pain Clinics, 18, 175-180.
[21]
Helenius, L.M., Hallikainen, D., Helenius, I., Meurman, J.H., Koskimies, S., et al.
(2004) HLA-DRB1* Alleles and Temporomandibular Joint Erosion in Patients with
Various Rheumatic Diseases. Scandinavian
Journal of Rheumatology, 33, 24-29. http://dx.doi.org/10.1080/03009740310004603
[22]
Yamaguchi, T.,
Nakaoka, H.,
Yamamoto, K.,
Fujikawa, T.,
Kim, Y.I., et al. (2014) Genome-Wide Association
Study of Degenerative Bony Changes of the Temporomandibular Joint. Oral Diseases, 20, 409-415. http://dx.doi.org/10.1111/odi.12141
[23]
Ahmad, M.,
Hollender, L.,
Anderson, Q.,
Kartha, K.,
Ohrbach, R., et al. (2009) Research Diagnostic
Criteria for Temporomandibular Disorders (RDC/TMD): Development of Image
Analysis Criteria and Examiner Reliability for Image Analysis. Oral Surgery, Oral Medicine, Oral Pathology, Oral Radiology, and Endodontology, 107, 844-860. http://dx.doi.org/10.1016/j.tripleo.2009.02.023
[24]
Schiffman, E.,
Ohrbach, R.,
Truelove, E.,
Look, J.,
Anderson, G., et al. (2014) Diagnostic Criteria for Temporomandibular
Disorders (DC/TMD) for Clinical and Research Applications: Recommendations of
the International RDC/TMD Consortium Network* and Orofacial Pain
Special Interest Groupdagger. Journal of
Oral & Facial Pain and Headache, 28, 6-27. http://dx.doi.org/10.11607/jop.1151
[25]
Jing, J.,
Hinton, R.J., Jing, Y.,
Liu, Y.,
Zhou, X. and Feng, J.Q. (2014)
Osterix Couples Chondrogenesis and Osteogenesis in Post-Natal Condylar Growth. Journal of Dental Research, 93, 1014-1021. http://dx.doi.org/10.1177/0022034514549379
[26]
Ishizuka, Y.,
Shibukawa, Y.,
Nagayama, M.,
Decker, R.,
Kinumatsu, T.,
Saito, A., et al. (2014) TMJ Degeneration in SAMP8 Mice Is Accompanied
by Deranged Ihh Signaling. Journal of
Dental Research, 93, 281-287. http://dx.doi.org/10.1177/0022034513519649
[27]
Li, X.H., Liang, W.N., Ye, H.Z., Weng, X.P., Liu, F.Y. and Liu, X.X. (2014)
Overexpression of Shox2 Leads to Congenital Dysplasia of the Temporomandibular
Joint in Mice. International Journal of
Molecular Sciences, 15, 13135- 13150. http://dx.doi.org/10.3390/ijms150813135
[28]
Jiao, K.,
Zhang, M.,
Niu, L.,
Yu, S.,
Zhen, G.,
Xian, L., et al. (2014) Overexpressed TGF-β in Subchondral Bone Leads to Mandibular Condyle
Degradation. Journal of Dental Research, 93, 140-147. http://dx.doi.org/10.1177/0022034513513034
[29]
Inman, K.E.,
Purcell, P.,
Kume, T. and Trainor, P.A. (2013)
Interaction between Foxc1 and Fgf8 during Mammalian Jaw Patterning and in the
Pathogenesis of Syngnathia. PLoS Genetics, 9, e1003949. http://dx.doi.org/10.1371/journal.pgen.1003949
[30]
Ricks, M.L.,
Farrell, J.T.,
Falk, D.J.,
Holt, D.W.,
Rees, M.,
Carr, J., et al. (2013) Osteoarthritis in Temporomandibular Joint of Col2a1
Mutant Mice. Archives of Oral Biology, 58, 1092-1099. http://dx.doi.org/10.1016/j.archoralbio.2013.02.008
Purcell, P.,
Jheon, A.,
Vivero, M.P.,
Rahimi, H.,
Joo, A. and Klein, O.D. (2012)
Spry1 and Spry2 Are Essential for De- velopment of the Temporomandibular Joint. Journal of Dental Research, 91, 387-393. http://dx.doi.org/10.1177/0022034512438401
[33]
Embree, M.,
Ono, M.,
Kilts, T.,
Walker, D.,
Langguth, J.,
Mao, J., et al. (2011) Role of Subchondral Bone during Early-Stage
Experimental TMJ Osteoarthritis. Journal
of Dental Research, 90, 1331-1338. http://dx.doi.org/10.1177/0022034511421930
[34]
Purcell, P.,
Joo, B.W.,
Hu, J.K.,
Tran, P.V.,
Calicchio, M.L., O’Connell, D.J., et al. (2009) Temporomandibular Joint Formation Requires Two
Distinct Hedgehog-Dependent Steps. Proceedings
of the National Academy of Sciences of the United States of America, 106, 18297-18302. http://dx.doi.org/10.1073/pnas.0908836106
[35]
Gu, S.P., Wei, N.,
Yu, L.,
Fei, J. and Chen, Y.P. (2008) Shox2-Deficiency Leads to Dysplasia and
Ankylosis of the Temporomandibular Joint in Mice. Mechanisms of Development, 125, 729-742. http://dx.doi.org/10.1016/j.mod.2008.04.003
[36]
Shibukawa, Y.,
Young, B.,
Wu, C.S., Yamada, S.,
Long, F.X., Pacifici, M., et al.
(2007)
Temporomandibular Joint Formation and Condyle Growth Require Indian Hedgehog
Signaling. Developmental Dynamics, 236, 426-434. http://dx.doi.org/10.1002/dvdy.21036
[37]
Meng, J.H., Ma, X.C., Ma, D.L. and Xu, C.M. (2005)
Microarray Analysis of Differential Gene Expression in Temporomandibular Joint Condylar Cartilage after
Experimentally Induced Osteoarthritis. Osteoarthritis
& Cartilage, 13, 1115- 1125. http://dx.doi.org/10.1016/j.joca.2005.03.010
[38]
Xu L, Flahiff, C.M., Waldman, B.A., Wu, D., Olsen, B.R., Setton, L.A., et al.
(2003)
Osteoarthritis-Like Changes and Decreased Mechanical Function of Articular
Cartilage in the Joints of Mice with the Chondrodysplasia Gene (Cho). Arthritis & Rheumatism, 48, 2509-2518. http://dx.doi.org/10.1002/art.11233
[39]
Gu, S.P., Wu, W.J., Liu, C.,
Yang, L.,
Sun, C.,
Ye, W.D., et al. (2014)
BMPRIA Mediated Signaling Is Essential for Temporomandibular Joint Development
in Mice. PLoS ONE, 9, e101000. http://dx.doi.org/10.1371/journal.pone.0101000
[40]
Li, X.H., Liu, H.B., Gu, S.P., Liu, C.,
Sun, C.,
Zheng, Y.Q., et al. (2014) Replacing Shox2 with Human SHOX Leads to Congenital Disc Degeneration of the Temporomandibular
Joint in Mice. Cell & Tissue Research, 355, 345-354. http://dx.doi.org/10.1007/s00441-013-1743-2
[41]
Wang, M.,
Li, S.,
Xie, W.,
Shen, J.,
Im, H.J.,
Holz, J.D., et al. (2014) Activation of β-Catenin Signalling Leads to Temporomandibular
Joint Defects. European Cells &
Materials, 28, 223-235.
[42]
Meng, J.H., Ma, X.C., Li, Z.M.
and Wu, D.C. (2007) Aquaporin-1 and Aquaporin-3 Expressions in the
Temporomandibular joint Condylar Cartilage after an Experimentally Induced
Osteoarthritis. Chinese Medical Journal, 120, 2191- 2194.
[43]
Yu, S.,
Sun, L.,
Liu, L.,
Jiao, K. and Wang, M.
(2012)
Differential Expression of IGF1, IGFR1 and IGFBP3 in Mandibular Condylar
Cartilage between Male and Female Rats Applied with Malocclusion. Journal of Oral Rehabilitation, 39, 727-736.
[44]
Asakawa-Tanne, Y., Su, S., Kunimatsu, R., Hirose, N., Mitsuyoshi, T., Okamoto, Y., et al.
(2015)
Effects of Enzymatic Degradation after Loading in Temporomandibular Joint. Journal of Dental Research, 94, 337-343. http://dx.doi.org/10.1177/0022034514560588
[45]
Ge, X.P., Ma, X.C., Meng, J.H., Zhang, C.G., Ma, K.T. and Zhou, C.Y. (2009)
Role of Wnt-5A in Interleukin-1β-In- duced
Matrix Metalloproteinase Expression in Rabbit Temporomandibular Joint Condylar
Chondrocytes. Arthritis & Rheumatism, 60, 2714-2722. http://dx.doi.org/10.1002/art.24779