The role of physical activity in the prevention of stroke is of great interest due to the high mortality and significant impact of stroke-related morbidity on the individual and on healthcare resources. The use of physical activity as a therapeutic strategy to maximise functional recovery in the rehabilitation of stroke survivors has a growing evidence base. This narrative review examines the existing literature surrounding the use of exercise and physical therapy in the primary and secondary prevention of stroke. It explores the effect of gender, exercise intensities and the duration of observed benefit. It details the most recent evidence for physical activity in improving functional outcome in stroke patients. The review summaries the current guidelines and recommendations for exercise therapy and highlights areas in which further research and investigation would be useful to determine optimal exercise prescription for effective prevention and rehabilitation in stroke. 1. Introduction Stroke is a leading cause of mortality and morbidity worldwide. In the UK stroke is the third most common cause of death and the main cause of acquired disability. Approximately 130,000 individuals experience a first ever stroke per annum [1]. In addition to widely applicable pharmacological treatment for acute stroke, effective prevention and rehabilitation strategies are crucial. The development of such strategies is a major challenge for the 21st century medicine. Exercise and physical activity have an increasing evidence base in the primary and secondary prevention of stroke and in stroke rehabilitation. The interface between physical activity and cerebrovascular disease is complex and of broad interest to clinicians, therapists, and epidemiologists. The importance of the relationship is becoming clearer: physical inactivity has been implicated by the INTERSTROKE study as one of the 5 key risk factors which account for more than 80% of the global burden of stroke [2]. Physical fitness training is increasingly being recommended as a component of stroke rehabilitation programmes due to the emerging body of evidence surrounding the benefits in improving the function after stroke [3]. The role of long-term physical activity in patients who have had a stroke in the prevention of further stroke is less clear. This paper provides a narrative review of the literature which addresses the interface between physical activity and cerebrovascular disease with specific reference to prevention of stroke and poststroke rehabilitation. 2. Search Strategy A computer-assisted
References
[1]
Scottish Intercollegiate Guidelines Network (SIGN), Management of Patients with Stroke or TIA: assessment, Investigation, Immediate Management and Secondary Prevention. SIGN 108, A National Clinical Guideline, Edinburgh, UK, 2008.
[2]
M. J. O'Donnell, X. Denis, L. Liu et al., “Risk factors for ischaemic and intracerebral haemorrhagic stroke in 22 countries (the INTERSTROKE study): a case-control study,” The Lancet, vol. 376, no. 9735, pp. 112–123, 2010.
[3]
N. F. Gordon, M. Gulanick, F. Costa et al., “Physical activity and exercise recommendations for stroke survivors: an American Heart Association scientific statement from the Council on Clinical Cardiology, Subcommittee on Exercise, Cardiac Rehabilitation, and Prevention; the Council on Cardiovascular Nursing; the Council on Nutrition, Physical Activity, and Metabolism; and the Stroke Council,” Stroke, vol. 35, no. 5, pp. 1230–1240, 2004.
[4]
C. M. M. Lawes, D. A. Bennett, V. L. Feigin, and A. Rodgers, “Blood pressure and stroke: an overview of published reviews,” Stroke, vol. 35, no. 3, pp. 776–785, 2004.
[5]
R. Collins, R. Peto, S. MacMahon et al., “Blood pressure, stroke, and coronary heart disease. Part 2, short-term reductions in blood pressure: overview of randomised drug trials in their epidemiological context,” The Lancet, vol. 335, no. 8693, pp. 827–838, 1990.
[6]
R. S. Paffenbarger Jr., A. L. Wing, R. T. Hyde, and D. L. Jung, “Physical activity and incidence of hypertension in college alumni,” American Journal of Epidemiology, vol. 117, no. 3, pp. 245–257, 1983.
[7]
S. N. Blair, N. N. Goodyear, L. W. Gibbons, and K. H. Cooper, “Physical fitness and incidence of hypertension in healthy normotensive men and women,” JAMA, vol. 252, no. 4, pp. 487–490, 1984.
[8]
L. S. Pescatello, A. E. Fargo, C. N. Leach, and H. H. Scherzer, “Short-term effect of dynamic exercise on arterial blood pressure,” Circulation, vol. 83, no. 5, pp. 1557–1561, 1991.
[9]
N. Sanossian and B. Ovbiagele, “Multimodality stroke prevention,” Neurologist, vol. 12, no. 1, pp. 14–31, 2006.
[10]
E. S. Ford, “Does exercise reduce inflammation? Physical activity and C-reactive protein among U.S. adults,” Epidemiology, vol. 13, no. 5, pp. 561–568, 2002.
[11]
G. Jennings, L. Nelson, P. Nestel, et al., “The effects of changes in physical activity on major cardiovascular risk factors, hemodynamics, sympathetic function, and glucose utilization in man: a controlled study of four levels of activity,” Circulation, vol. 73, no. 1, pp. 30–40, 1986.
[12]
T. A. Lakka and D. E. Laaksonen, “Physical activity in prevention and treatment of the metabolic syndrome,” Applied Physiology, Nutrition and Metabolism, vol. 32, no. 1, pp. 76–88, 2007.
[13]
N. M. Moyna and P. D. Thompson, “The effect of physical activity on endothelial function in man,” Acta Physiologica Scandinavica, vol. 180, no. 2, pp. 113–123, 2004.
[14]
W. Koenig, M. Sund, A. During, and E. Ernst, “Leisure-time physical activity but not work-related physical activity is associated with decreased plasma viscosity: results from a large population sample,” Circulation, vol. 95, no. 2, pp. 335–341, 1997.
[15]
R. Rauramaa, J. T. Salonen, and K. Seppanen, “Inhibition of platelet aggregability by moderate-intensity physical exercise: a randomized clinical trial in overweight men,” Circulation, vol. 74, no. 5, pp. 939–944, 1986.
[16]
R. D. Abbott, B. L. Rodriguez, C. M. Burchfiel, and J. D. Curb, “Physical activity in older middle-aged men and reduced risk of stroke: the Honolulu Heart Program,” American Journal of Epidemiology, vol. 139, no. 9, pp. 881–893, 1994.
[17]
U. Agnarsson, G. Thorgeirsson, H. Sigvaldason, and N. Sigfusson, “Effects of leisure-time physical activity and ventilatory function on risk for stroke in men: the Reykjavik study,” Annals of Internal Medicine, vol. 130, no. 12, pp. 987–990, 1999.
[18]
H. Ellekj?r, J. Holmen, E. Ellekj?r, and L. Vatten, “Physical activity and stroke mortality in women: ten-year follow-up of the Nord-Trondelag Health Survey, 1984–1986,” Stroke, vol. 31, no. 1, pp. 14–18, 2000.
[19]
K. R. Evenson, W. D. Rosamond, J. Cai et al., “Physical activity and ischemic stroke risk: the atherosclerosis risk in communities study,” Stroke, vol. 30, no. 7, pp. 1333–1339, 1999.
[20]
F. B. Hu, M. J. Stampfer, G. A. Colditz et al., “Physical activity and risk of stroke in women,” JAMA, vol. 283, no. 22, pp. 2961–2967, 2000.
[21]
D. K. Kiely, P. A. Wolf, L. A. Cupples, A. S. Beiser, and W. B. Kannel, “Physical activity and stroke risk: the Framingham study,” American Journal of Epidemiology, vol. 140, no. 7, pp. 608–620, 1994.
[22]
R. F. Gillum, M. E. Mussolino, and D. D. Ingram, “Physical activity and stroke incidence in women and men: the NHANES I epidemiologic follow-up study,” American Journal of Epidemiology, vol. 143, no. 9, pp. 860–868, 1996.
[23]
L. L. Haheim, I. Holme, I. Hjermann, and P. Leren, “Risk factors of stroke incidence and mortality: a 12-year follow-up of the Oslo study,” Stroke, vol. 24, no. 10, pp. 1484–1489, 1993.
[24]
G. Wannamethee and A. G. Shaper, “Physical activity and stroke in British middle aged men,” British Medical Journal, vol. 304, no. 6827, pp. 597–601, 1992.
[25]
R. L. Sacco, R. Gan, B. Boden-Albala et al., “Leisure-time physical activity and ischemic stroke risk: the Northern Manhattan Stroke Study,” Stroke, vol. 29, no. 2, pp. 380–387, 1998.
[26]
R. Shinton and G. Sagar, “Lifelong exercise and stroke,” British Medical Journal, vol. 307, no. 6898, pp. 231–234, 1993.
[27]
R. You, J. J. McNeil, H. M. O'Malley, S. M. Davis, and G. A. Donnan, “Risk factors for lacunar infarction syndromes,” Neurology, vol. 45, no. 8, pp. 1483–1487, 1995.
[28]
R. X. You, J. J. McNeil, H. M. O'Malley, S. M. Davis, A. G. Thrift, and G. A. Donnan, “Risk factors for stroke due to cerebral infarction in young adults,” Stroke, vol. 28, no. 10, pp. 1913–1918, 1997.
[29]
G. Hu, C. Sarti, P. Jousilahti, K. Silventoinen, N. C. Barengo, and J. Tuomilehto, “Leisure time, occupational, and commuting physical activity and the risk of stroke,” Stroke, vol. 36, no. 9, pp. 1994–1999, 2005.
[30]
P. T. Williams, “Reduction in incident stroke risk with vigorous physical activity: evidence from 7.7-year follow-up of the national runners' health study,” Stroke, vol. 40, no. 5, pp. 1921–1923, 2009.
[31]
Physical Activity Guidelines Advisory Committee. Physical Activity Guidelines Advisory Committee Report, US Department of Health and Human Services, Washington, DC, USA, 2008.
[32]
I. M. Lee, C. H. Hennekens, K. Berger, J. E. Buring, and J. E. Manson, “Exercise and risk of stroke in male physicians,” Stroke, vol. 30, no. 1, pp. 1–6, 1999.
[33]
I. M. Lee and R. S. Paffenbarger Jr., “Physical activity and stroke incidence: the Harvard Alumni Health Study,” Stroke, vol. 29, no. 10, pp. 2049–2054, 1998.
[34]
E. Fossum, G. W. Gleim, S. E. Kjeldsen et al., “The effect of baseline physical activity on cardiovascular outcomes and new-onset diabetes in patients treated for hypertension and left ventricular hypertrophy: the LIFE study,” Journal of Internal Medicine, vol. 262, no. 4, pp. 439–448, 2007.
[35]
K. D. Lindsted, S. Tonstad, and J. W. Kuzma, “Self-report of physical activity and patterns of mortality in Seventh-Day Adventist men,” Journal of Clinical Epidemiology, vol. 44, no. 4-5, pp. 355–364, 1991.
[36]
A. Menotti and F. Seccareccia, “Physical activity at work and job responsibility as risk factors for fatal coronary heart disease and other causes of death,” Journal of Epidemiology and Community Health, vol. 39, no. 4, pp. 325–329, 1985.
[37]
E. M. Simonsick, M. E. Lafferty, C. L. Phillips et al., “Risk due to inactivity in physically capable older adults,” American Journal of Public Health, vol. 83, no. 10, pp. 1443–1450, 1993.
[38]
A. R. Folsom and M. A. Pereira, “Cardiovascular benefits of endurance exercise,” in Endurance in Sports, R. J. Shephard and P.-O. Astrand, Eds., vol. 2 of The Encyclopedia of Sports Medicine, pp. 688–707, Blackwell Science, Oxford, UK, 2000.
[39]
C. D. Lee, A. R. Folsom, and S. N. Blair, “Physical activity and stroke risk: a meta-analysis,” Stroke, vol. 34, no. 10, pp. 2475–2481, 2003.
[40]
G. C. W. Wendel-Vos, A. J. Schuit, E. J. M. Feskens et al., “Physical activity and stroke. A meta-analysis of observational data,” International Journal of Epidemiology, vol. 33, no. 4, pp. 787–798, 2004.
[41]
C. D. Reimers, G. Knapp, and A. K. Reimers, “Exercise as stroke prophylaxis,” Deutsches Arzteblatt, vol. 106, no. 44, pp. 715–721, 2009.
[42]
A. Galimanis, M. L. Mono, M. Arnold, K. Nedeltchev, and H. P. Mattle, “Lifestyle and stroke risk: a review,” Current Opinion in Neurology, vol. 22, no. 1, pp. 60–68, 2009.
[43]
T. Kurth, S. C. Moore, J. M. Gaziano et al., “Healthy lifestyle and the risk of stroke in women,” Archives of Internal Medicine, vol. 166, no. 13, pp. 1403–1409, 2006.
[44]
J. R. Sattelmair, T. Kurth, J. E. Buring, and I. M. Lee, “Physical activity and risk of stroke in women,” Stroke, vol. 41, no. 6, pp. 1243–1250, 2010.
[45]
H. Noda, H. Iso, H. Toyoshima et al., “Walking and sports participation and mortality from coronary heart disease and stroke,” Journal of the American College of Cardiology, vol. 46, no. 9, pp. 1761–1767, 2005.
[46]
J. Z. Willey, Y. P. Moon, M. C. Paik, B. Boden-Albala, R. L. Sacco, and M. S. V. Elkind, “Physical activity and risk of ischemic stroke in the Northern Manhattan study,” Neurology, vol. 73, no. 21, pp. 1774–1779, 2009.
[47]
J. E. Manson, P. Greenland, A. Z. LaCroix et al., “Walking compared with vigorous exercise for the prevention of cardiovascular events in women,” The New England Journal of Medicine, vol. 347, no. 10, pp. 716–725, 2002.
[48]
S. P. Whelton, A. Chin, X. Xin, and J. He, “Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials,” Annals of Internal Medicine, vol. 136, no. 7, pp. 493–503, 2002.
[49]
A. J. Grau, C. Barth, B. Geletneky et al., “Association between recent sports activity, sports activity in young adulthood, and stroke,” Stroke, vol. 40, no. 2, pp. 426–431, 2009.
[50]
T. Thom, N. Haase, W. Rosamond et al., “Heart disease and stroke statistics—2006 Update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee,” Circulation, vol. 113, no. 6, pp. e85–e151, 2006.
[51]
V. J. Mol and C. A. Baker, “Activity intolerance in the geriatric stroke patient,” Rehabilitation Nursing, vol. 16, no. 6, pp. 337–343, 1991.
[52]
J. H. Rimmer, A. E. Rauworth, E. C. Wang, T. L. Nicola, and B. Hill, “A preliminary study to examine the effects of aerobic and therapeutic (Nonaerobic) exercise on cardiorespiratory fitness and coronary risk reduction in stroke survivors,” Archives of Physical Medicine and Rehabilitation, vol. 90, no. 3, pp. 407–412, 2009.
[53]
P. Langhorne, F. Coupar, and A. Pollock, “Motor recovery after stroke: a systematic review,” The Lancet Neurology, vol. 8, no. 8, pp. 741–754, 2009.
[54]
Atlantis, ECASS, and NINDs rt-PA Study Group Investigator, “Association of outcome with early stroke treatment: pooled analysis of ATLANTIS, ECASS, and NINDS rt-PA stroke trials,” The Lancet, vol. 363, pp. 768–774, 2004.
[55]
T. J. Quinn, S. Paolucci, K. S. Sunnerhagen et al., “Evidence-based stroke rehabilitation: an expanded guidance document from the European Stroke Organisation (ESO) guidelines for management of ischaemic stroke and transient ischaemic attack 2008,” Journal of Rehabilitation Medicine, vol. 41, no. 2, pp. 99–111, 2009.
[56]
D. H. Saunders, C. A. Greig, A. Young, and G. E. Mead, “Physical fitness training for stroke patients,” Cochrane Database of Systematic Reviews, no. 1, Article ID CD003316, 2004.
[57]
D. Rand, J. J. Eng, P. F. Tang, J. S. Jeng, and C. Hung, “How active are people with stroke?: use of accelerometers to assess physical activity,” Stroke, vol. 40, no. 1, pp. 163–168, 2009.
[58]
G. Mead, “Exercise after stroke,” BMJ, vol. 339, Article ID b2795, 2009.
[59]
D. S. Saunders, Physical fitness training after stroke: a systematic review and meta-analysis. Third UK stroke forum. Book of abstracts p15, 2008, http://www.ukstrokeforum.org/events/past_forum_conferences/2008_uksf_conference.html.
[60]
G. Robinson-Smith, M. V. Johnston, and J. Allen, “Self-care self-efficacy, quality of life, and depression after stroke,” Archives of Physical Medicine and Rehabilitation, vol. 81, no. 4, pp. 460–464, 2000.
[61]
J. R. Brinkmann and T. A. Hoskins, “Physical conditioning and altered self-concept in rehabilitated hemiplegic patients,” Physical Therapy, vol. 59, no. 7, pp. 859–865, 1979.
[62]
R. F. Macko, G. V. Smith, C. L. Dobrovolny, J. D. Sorkin, A. P. Goldberg, and K. H. Silver, “Treadmill training improves fitness reserve in chronic stroke patients,” Archives of Physical Medicine and Rehabilitation, vol. 82, no. 7, pp. 879–884, 2001.
[63]
K. Potempa, M. Lopez, L. T. Braun, J. P. Szidon, L. Fogg, and T. Tincknell, “Physiological outcomes of aerobic exercise training in hemiparetic stroke patients,” Stroke, vol. 26, no. 1, pp. 101–105, 1995.
[64]
J. H. Rimmer, B. Riley, T. Creviston, and T. Nicola, “Exercise training in a predominantly African-American group of stroke survivors,” Medicine and Science in Sports and Exercise, vol. 32, no. 12, pp. 1990–1996, 2000.
[65]
B. J. Fletcher, S. B. Dunbar, J. M. Felner et al., “Exercise testing and training in physically disabled men with clinical evidence of coronary artery disease,” American Journal of Cardiology, vol. 73, no. 2, pp. 170–174, 1994.
[66]
P. D. Thompson, D. Buchner, I. L. Pi?a et al., “Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease: a statement from the council on clinical cardiology (subcommittee on exercise, rehabilitation, and prevention) and the council on nutrition, physical activity, and metabolism (subcommittee on physical activity),” Circulation, vol. 107, no. 24, pp. 3109–3116, 2003.
[67]
C. D. Lee and S. N. Blair, “Cardiorespiratory fitness and stroke mortality in men,” Medicine and Science in Sports and Exercise, vol. 34, no. 4, pp. 592–595, 2002.
[68]
R. R. Pate, M. Pratt, S. N. Blair et al., “Physical activity and public health: a recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine,” JAMA, vol. 273, no. 5, pp. 402–407, 1995.
[69]
M. Y. C. Pang, J. J. Eng, A. S. Dawson, and S. Gylfadóttir, “The use of aerobic exercise training in improving aerobic capacity in individuals with stroke: a meta-analysis,” Clinical Rehabilitation, vol. 20, no. 2, pp. 97–111, 2006.
[70]
E. J. Roth, M. Mueller, and D. Green, “Cardiovascular response to physical therapy in stroke rehabilitation,” Neurological Rehabilitation, vol. 2, pp. 7–13, 1992.
[71]
M. J. MacKay-Lyons and L. Makrides, “Cardiovascular stress during a contemporary stroke rehabilitation program: is the intensity adequate to induce a training effect?” Archives of Physical Medicine and Rehabilitation, vol. 83, no. 10, pp. 1378–1383, 2002.
[72]
S. J. Olney, M. P. Griffin, T. N. Monga, and I. D. McBride, “Work and power in gait of stroke patients,” Archives of Physical Medicine and Rehabilitation, vol. 72, no. 5, pp. 309–314, 1991.
[73]
R. W. Bohannon and S. Walsh, “Nature, reliability, and predictive value of muscle performance measures in patients with hemiparesis following stroke,” Archives of Physical Medicine and Rehabilitation, vol. 73, no. 8, pp. 721–725, 1992.
[74]
E. Hamrin, G. Eklund, and A. K. Hillgren, “Muscle strength and balance in post-stroke patients,” Upsala Journal of Medical Sciences, vol. 87, no. 1, pp. 11–26, 1982.
[75]
S. A. Sharp and B. J. Brouwer, “Isokinetic strength training of the hemiparetic knee: effects on function and spasticity,” Archives of Physical Medicine and Rehabilitation, vol. 78, no. 11, pp. 1231–1236, 1997.
[76]
A. Weiss, T. Suzuki, J. Bean, and R. A. Fielding, “High intensity strength training improves strength and functional performance after stroke,” American Journal of Physical Medicine and Rehabilitation, vol. 79, no. 4, pp. 369–376, 2000.
[77]
J. Bernhardt, H. Dewey, A. Thrift, and G. Donnan, “Inactive and alone: physical activity within the first 14 days of acute stroke unit care,” Stroke, vol. 35, no. 4, pp. 1005–1009, 2004.
[78]
S. L. Wolf, C. J. Winstein, J. P. Miller et al., “Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial,” JAMA, vol. 296, no. 17, pp. 2095–2104, 2006.
[79]
O. Armagan, F. Tascioglu, and C. Oner, “Electromyographic biofeedback in the treatment of the hemiplegic hand: a placebo-controlled study,” American Journal of Physical Medicine and Rehabilitation, vol. 82, no. 11, pp. 856–861, 2003.
[80]
J. V. Basmajian, C. A. Gowland, and A. J. Finlayson, “Stroke treatment: comparison of integrated behavioral physical therapy vs traditional physical therapy programs,” Archives of Physical Medicine and Rehabilitation, vol. 68, no. 5, pp. 267–272, 1987.
[81]
S. J. Page, P. Levine, and A. C. Leonard, “Effects of mental practice on affected limb use and function in chronic stroke,” Archives of Physical Medicine and Rehabilitation, vol. 86, no. 3, pp. 399–402, 2005.
[82]
S. J. Page, P. Levine, and A. Leonard, “Mental practice in chronic stroke: results of a randomized, placebo-controlled trial,” Stroke, vol. 38, no. 4, pp. 1293–1297, 2007.
[83]
F. Amirabdollahian, R. Loureiro, E. Gradwell, C. Collin, W. Harwin, and G. Johnson, “Multivariate analysis of the Fugl-Meyer outcome measures assessing the effectiveness of GENTLE/S robot-mediated stroke therapy,” Journal of NeuroEngineering and Rehabilitation, vol. 4, article 4, 2007.
[84]
B. T. Volpe, D. Lynch, A. Rykman-Berland et al., “Intensive sensorimotor arm training mediated by therapist or robot improves hemiparesis in patients with chronic stroke,” Neurorehabilitation and Neural Repair, vol. 22, no. 3, pp. 305–310, 2008.
[85]
S. Masiero, A. Celia, G. Rosati, and M. Armani, “Robotic-assisted rehabilitation of the upper limb after acute stroke,” Archives of Physical Medicine and Rehabilitation, vol. 88, no. 2, pp. 142–149, 2007.
[86]
K. C. Stewart, J. H. Cauraugh, and J. J. Summers, “Bilateral movement training and stroke rehabilitation: a systematic review and meta-analysis,” Journal of the Neurological Sciences, vol. 244, no. 1-2, pp. 89–95, 2006.
[87]
H. S. Jorgensen, H. Nakayama, H. O. Raaschou, and T. S. Olsen, “Recovery of walking function in stroke patients: the Copenhagen stroke study,” Archives of Physical Medicine and Rehabilitation, vol. 76, no. 1, pp. 27–32, 1995.
[88]
I. Van de Port, Predicting Outcomes in Patients with Chronic Stroke: Findings of a 3 Year Follow Up Study, chapter 5: effects of exercise training programs on walking competency after stroke: a systematic review, 2006.
[89]
J. Mehrholz, C. Werner, J. Kugler, and M. Pohl, “Electromechanical-assisted training for walking after stroke,” Cochrane Database of Systematic Reviews, no. 4, Article ID CD006185, 2007.
[90]
A. M. Moseley, A. Stark, I. D. Cameron, and A. Pollock, “Treadmill training and body weight support for walking after stroke,” Cochrane Database of Systematic Reviews, no. 4, Article ID CD002840, 2005.
[91]
M. Y. Lee, M. K. Wong, and F. T. Tang, “Using biofeedback for standing-steadiness, weight-bearing training,” IEEE Engineering in Medicine and Biology Magazine, vol. 15, no. 6, pp. 112–116, 1996.
[92]
C. M. Sackley and N. B. Lincoln, “Single blind randomized controlled trial of visual feedback after stroke: effects on stance symmetry and function,” Disability and Rehabilitation, vol. 19, no. 12, pp. 536–546, 1997.
[93]
A. Shumway-Cook, D. Anson, and S. Haller, “Postural sway biofeedback: its effect on reestablishing stance stability in hemiplegic patients,” Archives of Physical Medicine and Rehabilitation, vol. 69, no. 6, pp. 395–400, 1988.
[94]
A. M. K. Wong, M. Y. Lee, J. K. Kuo, and F. T. Tang, “The development and clinical evaluation of a standing biofeedback trainer,” Journal of Rehabilitation Research and Development, vol. 34, no. 3, pp. 322–327, 1997.
[95]
R. McClellan and L. Ada, “A six-week, resource-efficient mobility program after discharge from rehabilitation improves standing in people affected by stroke: placebo-controlled, randomised trial,” Australian Journal of Physiotherapy, vol. 50, no. 3, pp. 163–167, 2004.
[96]
N. M. Salbach, N. E. Mayo, S. Wood-Dauphinee, J. A. Hanley, C. L. Richards, and R. C?té, “A task-orientated intervention enhances walking distance and speed in the first year post stroke: a randomized controlled trial,” Clinical Rehabilitation, vol. 18, no. 5, pp. 509–519, 2004.
[97]
W. De Weerdt, G. Nuyens, H. Feys et al., “Group physiotherapy improves time use by patients with stroke in rehabilitation,” Australian Journal of Physiotherapy, vol. 47, no. 1, pp. 53–61, 2001.
[98]
G. Kwakkel, R. Van Peppen, R. C. Wagenaar et al., “Effects of augmented exercise therapy time after stroke: a meta-analysis,” Stroke, vol. 35, no. 11, pp. 2529–2536, 2004.