全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Design, Fabrication, and Swimming Performance of a Free-Swimming Tuna-Mimetic Robot

DOI: 10.1155/2014/687985

Full-Text   Cite this paper   Add to My Lib

Abstract:

High efficiency in cruising is a determining factor in developing tuna-mimetic robots. So far, a number of tuna-like robots have been made. Nevertheless, the University of Canterbury has developed its own tuna-like robot called UC-Ika 1 to investigate and to accordingly improve the swimming performance of the biomimetic swimming robots. In order to do so, the propulsion system of a tuna with respect to its thrust and resistive forces is studied. Following that, the fish robot is designed and fabricated considering the tuna propulsion system. The robot is then tested several times to investigate its swimming performance. Comparison of the speed and efficiency of UC-Ika 1 with those of other tuna-like robots shows a promising improvement of cruising performance of UC-Ika 1. 1. Introduction The majority of underwater tasks such as monitoring of sea cable and pipelines or pollution search demand a robot with navigation capabilities for a long period of time [1]. For this purpose, biomimetic swimming robots are the most suitable ones due to their fast, very efficient, and highly maneuverable performance [2]. The first biomimetic swimming robot, RoboTuna, was built at MIT in 1994 [3]. In 1997, Vorticity Control Unmanned Undersea Vehicle (VCUUV) was developed based on RoboTuna with some improvement and more capabilities such as avoiding obstacles and having up-down motion [4]. Since then, a number of fish robots with more capabilities are developed [5–8]. The more detailed state of art in robotic fish is presented in [9]. Among the existing fish robots, several robots like RoboTuna and VCUUV are inspired by tuna which is a pelagic fish whose locomotion is highly efficient [10] (bear in mind that Bandyopadhyay [11] believes that the efficiency of biomimetic swimming robot is not higher than screw propeller robots but animals do show superior manoeuvrability in swimming). However, the efficiency of locomotion of tuna-mimetic robots is not thoroughly investigated. Hence, the authors have developed a fish robot that is inspired by a tuna in order to study its cruising efficiency. This paper presents the steps of developing the tuna-mimetic robot in brief including design, modeling, and fabrication and also discusses the swimming performance of the robot in detail. The paper is organized as follows. Next section focuses on the design criteria of the fish robot. In Section 3, the robot design is introduced. In Section 4, the fabrication process is the center of attention including how the fish is fabricated with which material. Section 5 analyzes the swimming

References

[1]  J. Yu, M. Tan, S. Wang, and E. Chen, “Development of a biomimetic robotic fish and its control algorithm,” IEEE Transactions on Systems, Man, and Cybernetics B: Cybernetics, vol. 34, no. 4, pp. 1798–1810, 2004.
[2]  H. Hu, J. Liu, I. Dukes, and G. Francis, “Design of 3D swim patterns for autonomous robotic fish,” in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '06), pp. 2406–2411, October 2006.
[3]  M. S. Triantafyllou and G. S. Triantafyllou, “An efficient swimming machine,” Scientific American, vol. 272, no. 3, pp. 40–48, 1995.
[4]  J. M. Anderson and N. K. Chhabra, “Maneuvering and stability performance of a robotic tuna,” Integrative and Comparative Biology, vol. 42, no. 1, pp. 118–126, 2002.
[5]  J. Liu, I. Dukes, R. Knight, and H. Hu, “Development of fish-like swimming behaviours for an autonomous robotic fish,” in Proceedings of the Control Conference, vol. 4, 2004.
[6]  D. Lachat, A. Crespi, and A. Ijspeert, “Boxybot, the fish robot design and realization,” EPFL Semester Project 27, 2005.
[7]  P. Kodati, J. Hinkle, A. Winn, and X. Deng, “Microautonomous robotic ostraciiform (MARCO): hydrodynamics, design, and fabrication,” IEEE Transactions on Robotics, vol. 24, no. 1, pp. 105–117, 2008.
[8]  J. Liang, T. Wang, and L. Wen, “Development of a two-joint robotic fish for real-world exploration,” Journal of Field Robotics, vol. 28, no. 1, pp. 70–79, 2011.
[9]  S. F. Masoomi, S. Gutschmidt, X. Chen, and M. Sellier, “Novel swimming mechanism for a robotis fish,” in Engineering Creative Design in Robotics and Mechatronics, pp. 41–58, IGI Global, Hershey, Pa, USA, 2013.
[10]  M. Sfakiotakis, D. M. Lane, and J. B. C. Davies, “Review of fish swimming modes for aquatic locomotion,” IEEE Journal of Oceanic Engineering, vol. 24, no. 2, pp. 237–252, 1999.
[11]  P. R. Bandyopadhyay, “Trends in biorobotic autonomous undersea vehicles,” IEEE Journal of Oceanic Engineering, vol. 30, no. 1, pp. 109–139, 2005.
[12]  R. Alexander, Principles of Animal Locomotion, Princeton University Press, Princeton, NJ, USA, 2002.
[13]  J. Videler, Fish Swimming, vol. 10, Springer, New York, NY, USA, 1993.
[14]  G. S. Triantafyllou, M. S. Triantafyllou, and M. A. Grosenbaugh, “Optimal thrust development in oscillating foils with application to fish propulsion,” Journal of Fluids and Structures, vol. 7, no. 2, pp. 205–224, 1993.
[15]  M. Lighthill, “Note on the swimming of slender fish,” Journal of Fluid Mechanics, vol. 9, no. 2, pp. 305–317, 1960.
[16]  S. Masoomi, S. Gutschmidt, X. Chen, and M. Sellier, “Mathematical modelling and parameter optimization of a 2-dof fish robot,” in Proceedings of the 19th International Conference on Mechatronics and Machine Vision in Practice (M2VIP '12), pp. 212–217, 2012.
[17]  J. Yu and L. Wang, “Parameter optimization of simplified propulsive model for biomimetic robot fish,” in Proceedings of the IEEE International Conference on Robotics and Automation (ICRA '05), pp. 3306–3311, April 2005.
[18]  C. K. Chua, K. F. Leong, and C. C. S. Lim, Rapid Prototyping: Principles and Applications, World Scientific Publishing, River Edge, NJ, USA, 2010.
[19]  Sylgard 184 silicone elastomer, Brochure, Dow Corning, April 2013, http://www.dowcorning.com/DataFiles/090276fe80190b08.pdf.
[20]  C. Mavroidis, C. Pfeiffer, and M. Mosley, “5.1 conventional actuators, shape memory alloys, and electrorheological fluids,” in Automation, Miniature Robotics and Sensors for Nondestructive Testing and Evaluation, vol. 4, p. 189, 2000.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133