High quality sedimentary measurements are required for studying fluvial geomorphology and hydrological processes e.g., flood and river dynamics. Mobile laser scanning (MLS) currently provides the opportunity to achieve high precision measurements of coarse fluvial sediments in a large survey area. Our study aims to investigate the capability of single-track MLS data for individual particle-based sediment modeling. Individual particles are firstly detected and delineated from a digital surface model (DSM) that is generated from the MLS data. 3D MLS points of each detected individual particle are then extracted from the point cloud. The grain size and the sphericity as well as the orientation of each individual particle are estimated based on the extracted MLS points. According to the evaluations conduced in the paper, it is possible to detect and to model sediment particles above 63 mm from a single-track MLS point cloud with a high reliability. The paper further discusses the strength and the challenges of individual particle-based approach for sedimentary measurement.
References
[1]
Hodge, R.; Brasington, J.; Richards, K. In situ characterization of grain-scale fluvial morphology using Terrestrial Laser Scanning. Earth Surf. Process. Landf 2009, 34, 954–968.
[2]
Heritage, G.L.; Milan, D.J. Terrestrial laser scanning of grain roughness in a gravel-bed river. Geomorphology 2009, 113, 4–11.
[3]
Manners, R.; Schmidt, J.; Wheaton, J.M. Multiscalar model for the determination of spatially explicit riparian vegetation roughness. J. Geophys. Res.-Earth Surf. 2013, doi:10.1029/2011JF002188.
[4]
Snyder, N.P.; Nesheim, A.O.; Wilkins, B.C.; Edmonds, D.A. Predicting grain size in gravel-bedded rivers using digital elevation models: Application to three Maine watersheds. Geol. Soc. Am. Bull 2013, 125, 148–163.
[5]
Brasington, J.; Vericat, D.; Rychkov, I. Modeling river bed morphology, roughness, and surface sedimentology using high resolution terrestrial laser scanning. Water Resour. Res. 2012, doi:10.1029/2012WR012223.
[6]
Milan, D.J. Terrestrial Laser Scan-Derived Topographic and Roughness Data for Hydraulic Modelling of Gravel-Bed Rivers. In Laser Scanning for the Environmental Sciences; Heritage, G.L., Large, A.R.G., Eds.; Wiley-Blackwell: Oxford, UK, 2009. doi:10.1002/9781444311952.ch9.
[7]
Alho, P.; Kukko, A.; Hyypp?, H.; Kaartinen, H.; Hyypp?, J.; Jaakkola, A. Application of boat-based laser scanning for river survey. Earth Surf. Process. Landf 2009, 34, 1831–1838.
[8]
Hohenthal, J.; Alho, P.; Hyypp?, J.; Hyypp?, H. Laser scanning applications in fluvial studies. Prog. Phys. Geogr 2011, 35, 782–809.
[9]
Kukko, A.; Kaartinen, H.; Hyypp?, J.; Chen, Y. Multiplatform Mobile laser scanning: Usability and performance. Sensors 2012, 12, 11712–11733.
[10]
Glennie, C.; Brooks, B.; Ericksen, T.; Hauser, D.; Hudnut, K.; Foster, J.; Avery, J. Compact multipurpose mobile laser scanning system—Initial tests and results. Remote Sens 2013, 5, 521–538.
[11]
Ruppert, J. A Delaunay refinement algorithm for quality 2-dimensional mesh generation. J. Algorithms 1995, 18, 548–585.
[12]
Sibson, R. A brief description of natural neighbour interpolation. Interpret. Multivar. Data 1981, 21, 21–36.
[13]
Gonzalez, R.C.; Woods, R.E.; Eddins, S.L. Digital Image Processing Using MATLAB, 2nd ed ed.; Tata McGraw Hill Education: Delhi, India, 2010.
[14]
Kass, M.; Witkin, A.; Terzopoulos, D. Snakes: Active contour models. Int. J. Comput. Vis 1988, 1, 321–331.
[15]
Caselles, V.; Kimmel, R.; Sapiro, G. Geodesic active contours. Int. J. Comput. Vis 1997, 22, 61–79.
[16]
Mumford, D.; Shah, J. Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math 1989, 42, 577–685.
[17]
Chan, T.F.; Vese, L.A. Active contours without edges. IEEE Trans. Image Process 2001, 10, 266–277.
[18]
Khachiyan, L.G. Rounding of polytopes in the real number model of computation. Math. Oper. Res 1996, 21, 307–320.
[19]
Moshtagh, N. Minimum Volume Enclosing Ellipsoid. Matlab Central, Available online: http://www.mathworks.com/matlabcentral/fileexchange/9542-minimum-volume-enclosing-ellipsoid (accessed on 1 September 2013).
[20]
Hayakawa, Y.; Oguchi, T. Evaluation of gravel sphericity and roundness based on surface-area measurement with a laser scanner. Comput. Geosci 2005, 31, 735–741.
[21]
Sithole, G.; Vosselman, G. Experimental comparison of filter algorithms for bare-Earth extraction from airborne laser scanning point clouds. ISPRS J. Photogramm. Remote Sens 2004, 59, 85–101.
[22]
Brodu, N.; Lague, D. 3D terrestrial lidar data classification of complex natural scenes using a multi-scale dimensionality criterion: Applications in geomorphology. ISPRS J. Photogramm. Remote Sens 2012, 68, 121–134.