Zimbabwe’s economy declined between 2000 and 2009. This study detects the economic decline in different regions of Zimbabwe using nighttime light imagery from the Defense Meteorological Satellite Program’s Operational Linescan System (DMSP-OLS). We found a good correlation (coefficient = 0.7361) between Zimbabwe’s total nighttime light (TNL) and Gross Domestic Product (GDP) for the period 1992 to 2009. Therefore, TNL was used as an indicator of regional economic conditions in Zimbabwe. Nighttime light imagery from 2000 and 2008 was compared at both national and regional scales for four types of regions. At the national scale, we found that nighttime light in more than half of the lit area decreased between 2000 and 2008. Moreover, within the four region types (inland mining towns, inland agricultural towns, border towns and cities) we determined that the mining and agricultural sectors experienced the most severe economic decline. Some of these findings were validated by economic survey data, proving that the nighttime light data is a potential data source for detecting the economic decline in Zimbabwe.
References
[1]
Cliffe, L.; Alexander, J.; Cousins, B.; Gaidzanwa, R. An overview of fast track land reform in Zimbabwe: Editorial introduction. J. Peasant Stud 2011, 38, 907–938.
[2]
Mzumara, M. Was Zimbabwe competitive in international trade 2000–2009? Int. J. Econ. Bus. Res 2011, 2, 195–216.
[3]
Masuka, G. Contests and struggle: Cotton farmers and COTTCO in Rushinga district, Zimbabwe, 1999–2006. Geoforum 2012, 43, 573–584.
[4]
Obi, A.; Chisango, F.F. Performance of smallholder agriculture under limited mechanization and the fast track land reform program in Zimbabwe. Int. Food Agribus. Manag. Rev 2011, 14, 85–104.
[5]
Baudron, F.; Tittonell, P.; Corbeels, M.; Letourmy, P.; Giller, K.E. Comparative performance of conservation agriculture and current smallholder farming practices in semi-arid Zimbabwe. Field Crops Res 2012, 132, 117–128.
[6]
Nyota, S.; Sibanda, F. Digging for diamonds, wielding new words: A linguistic perspective on Zimbabwe’s “Blood Diamonds”. J. South. Afr. Stud 2012, 38, 129–144.
[7]
Chiripanhura, B.M. Sneaking up and stumbling back: Textiles sector performance under crisis conditions in Zimbabwe. J. Int. Dev 2010, 22, 153–175.
[8]
Mhiripiri, N.A. The production of stardom and the survival dynamics of the Zimbabwean music industry in the post-2000 crisis period. J. Afr. Media Stud 2010, 2, 209–223.
[9]
Famine Early Warning Systems Network. Available online: http://www.fews.net (accessed on 5 September 2013).
Elvidge, C.D.; Sutton, P.C.; Ghosh, T.; Tuttle, B.T.; Baugh, K.E.; Bhaduri, B.; Bright, E. A global poverty map derived from satellite data. Comp. Geosci 2009, 35, 1652–1660.
[12]
Li, X.; Xu, H.; Chen, X.; Li, C. Potential of NPP-VIIRS nighttime light imagery for modeling the regional economy of China. Remote Sens 2013, 5, 3057–3081.
[13]
Chen, X.; Nordhaus, W.D. Using luminosity data as a proxy for economic statistics. Proc. Natl. Acad. Sci. USA 2011, 108, 8589–8594.
[14]
Henderson, V.; Storeygard, A.; Weil, D.N. A bright idea for measuring economic growth. Am. Econ. Rev 2011, 101, 194–199.
[15]
Ghosh, T.; Anderson, S.; Powell, R.L.; Sutton, P.C.; Elvidge, C.D. Estimation of Mexico’s informal economy and remittances using nighttime imagery. Remote Sens 2009, 1, 418–444.
[16]
Zhuo, L.; Ichinose, T.; Zheng, J.; Chen, J.; Shi, P.J.; Li, X. Modelling the population density of China at the pixel level based on DMSP/OLS non-radiance-calibrated night-time light images. Int. J. Remote Sens 2009, 30, 1003–1018.
[17]
Bharti, N.; Tatem, A.J.; Ferrari, M.J.; Grais, R.F.; Djibo, A.; Grenfell, B.T. Explaining seasonal fluctuations of measles in Niger using nighttime lights imagery. Science 2011, 334, 1424–1427.
[18]
Zhang, Q.L.; Seto, K.C. Mapping urbanization dynamics at regional and global scales using multi-temporal DMSP/OLS nighttime light data. Remote Sens. Environ 2011, 115, 2320–2329.
[19]
Small, C.; Pozzi, F.; Elvidge, C.D. Spatial analysis of global urban extent from DMSP-OLS night lights. Remote Sens. Environ 2005, 96, 277–291.
[20]
Zhang, Q.; Seto, K. Can night-time light data identify typologies of urbanization? A global assessment of successes and failures. Remote Sens 2013, 5, 3476–3494.
[21]
Prasad, V.K.; Kant, Y.; Gupta, P.K.; Elvidge, C.; Badarinath, K. Biomass burning and related trace gas emissions from tropical dry deciduous forests of India: A study using DMSP-OLS data and ground-based measurements. Int. J. Remote Sens 2002, 23, 2837–2851.
[22]
Waluda, C.; Yamashirob, C.; Elvidge, C.; Hobson, V.; Rodhouse, P. Quantifying light-fishing for Dosidicus gigas in the eastern Pacific using satellite remote sensing. Remote Sens. Environ 2004, 91, 129–133.
[23]
Chand, T.R.K.; Badarinath, K.V.S.; Elvidge, C.D.; Tuttle, B.T. Spatial characterization of electrical power consumption patterns over India using temporal DMSP-OLS night-time satellite data. Int. J. Remote Sens 2009, 30, 647–661.
[24]
Agnew, J.; Gillespie, T.W.; Gonzalez, J.; Min, B. Baghdad nights: Evaluating the US military “surge” using nighttime light signatures. Environ. Plan. A 2008, 40, 2285–2295.
[25]
Aubrecht, C.; Elvidge, C.; Longcore, T.; Rich, C.; Safran, J.; Strong, A.; Eakin, C.; Baugh, K.; Tuttle, B.; Howard, A. A global inventory of coral reef stressors based on satellite observed nighttime lights. Geocarto Int 2008, 23, 467–479.
[26]
Ma, T.; Zhou, C.; Pei, T.; Haynie, S.; Fan, J. Quantitative estimation of urbanization dynamics using time series of DMSP/OLS nighttime light data: A comparative case study from China’s cities. Remote Sens. Environ 2012, 124, 99–107.
[27]
Liu, Z.F.; He, C.Y.; Zhang, Q.F.; Huang, Q.X.; Yang, Y. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. Landsc. Urban Plan 2012, 106, 62–72.
[28]
He, C.Y.; Ma, Q.; Li, T.; Yang, Y.; Liu, Z.F. Spatiotemporal dynamics of electric power consumption in Chinese Mainland from 1995 to 2008 modeled using DMSP/OLS stable nighttime lights data. J. Geogr. Sci 2012, 22, 125–136.
[29]
Zhao, N.Z.; Samson, E.L. Estimation of virtual water contained in international trade products using nighttime imagery. Int. J. Appl. Earth Observ. Geoinf 2012, 18, 243–250.
[30]
Elvidge, C.D.; Ziskin, D.; Baugh, K.E.; Tuttle, B.T.; Ghosh, T.; Pack, D.W.; Erwin, E.H.; Zhizhin, M. A fifteen year record of global natural gas flaring derived from satellite data. Energies 2009, 2, 595–622.
[31]
Elvidge, C.D.; Sutton, P.C.; Baugh, K.E.; Ziskin, D.; Ghosh, T.; Anderson, S. National trends in satellite observed lighting: 1992–2012. Available online: http://ngdc.noaa.gov/eog/dmsp/download_national_trend.html (accessed on 5 September 2013).
[32]
Elvidge, C.D.; Baugh, K.E.; Kihn, E.A.; Kroehl, H.W.; Davis, E.R.; Davis, C.W. Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption. Int. J. Remote Sens 1997, 18, 1373–1379.
[33]
The World Bank. World Gross Domestic Products. Available online: http://data.worldbank.org/indicator/NY.GDP.MKTP.CD (accessed on 5 September 2013).
[34]
Mutekede, L.; Sigauke, N. Housing Finance Mechanisms in Zimbabwe; The United Nations Human Settlements Programme: Nairobi, Kenya, 2009.
[35]
United States Geological Survery. Mineral Resources Data System. Available online: http://tin.er.usgs.gov/mrds/ (accessed on 5 September 2013).
[36]
Conservation Biology Institute. Global Cropland Intensity. Available online: http://app.databasin.org/app/pages/datasetPage.jsp?id=00b710d07e2f406d8417a938bc77b6a5 (accessed on 5 September 2013).
[37]
The Chamber of Mines of Zimbabwe. Zimbabwe Mineral Production Statistics. Available online: http://www.chamberofminesofzimbabwe.com/publications/category/%206-production-statistics.html (accessed on 5 September 2013).
[38]
Food and Agriculture Organization. Crop and Food Security Assessment Mission to Zimbabwe. Available online: http://www.fao.org/docrep/012/ak352e/ak352e00.htm (accessed on 5 September 2013).
[39]
Mate, R. Making Ends Meet at the Margins? Grappling with Economic Crisis and Belonging in Beitbridge Town, Zimbabwe; CODESRIA: Dakar, Senegal, 2005.
[40]
The World Bank. World Development Indicators for Zimbawe, Available online: http://data.worldbank.org/country/zimbabwe (accessed on 5 September 2013).
[41]
Sibanda, M.; Murwira, A. The use of multi-temporal MODIS images with ground data to distinguish cotton from maize and sorghum fields in smallholder agricultural landscapes of Southern Africa. Int. J. Remote Sens 2012, 33, 4841–4855.
[42]
Manatsa, D.; Nyakudya, I.W.; Mukwada, G.; Matsikwa, H. Maize yield forecasting for Zimbabwe farming sectors using satellite rainfall estimates. Nat. Hazards 2011, 59, 447–463.
[43]
Koller, R.; Samimi, C. Deforestation in the Miombo woodlands: A pixel-based semi-automated change detection method. Int. J. Remote Sens 2011, 32, 7631–7649.
[44]
Rwasoka, D.T.; Gumindoga, W.; Gwenzi, J. Estimation of actual evapotranspiration using the Surface Energy Balance System (SEBS) algorithm in the Upper Manyame catchment in Zimbabwe. Phys. Chem. Earth 2011, 36, 736–746.
[45]
Kamusoko, C.; Aniya, M. Hybrid classification of Landsat data and GIS for land use/cover change analysis of the Bindura district, Zimbabwe. Int. J. Remote Sens 2009, 30, 97–115.
[46]
Chitekwe-Biti, B.; Mudimu, P.; Nyama, G.M.; Jera, T. Developing an informal settlement upgrading protocol in Zimbabwe—The Epworth story. Environ. Urban 2012, 24, 131–148.