The increasing availability of satellite imagery acquired by existing and new sensors allows a wide variety of new applications that depend on the use of diverse spectral and spatial resolution data sets. One of the pre-conditions for the use of hybrid image data sets is a consistent geo-correction capacity. We demonstrate how a novel fast template matching approach implemented on a graphics processing unit (GPU) allows us to accurately and rapidly geo-correct imagery in an automated way. The key difference with existing geo-correction approaches, which do not use a GPU, is the possibility to match large source image segments (8,192 by 8,192 pixels) with relatively large templates (512 by 512 pixels) significantly faster. Our approach is sufficiently robust to allow for the use of various reference data sources. The need for accelerated processing is relevant in our application context, which relates to mapping activities in the European Copernicus emergency management service. Our new method is demonstrated over an area northwest of Valencia (Spain) for a large forest fire event in July 2012. We use the Disaster Monitoring Constellation’s (DMC) DEIMOS-1 and RapidEye imagery for the delineation of burnt scar extent. Automated geo-correction of each full resolution image set takes approximately one minute. The reference templates are taken from the TerraColor data set and the Spanish national ortho-imagery database, through the use of dedicated web map services. Geo-correction results are compared to the vector sets derived in the Copernicus emergency service activation request.
References
[1]
Voigt, S.; Kemper, T.; Riedlinger, T.; Kiefl, R.; Scholte, K.; Mehl, H. Satellite image analysis for disaster and crisis-management support. IEEE Trans. Geosci. Remote Sens 2011, 45, 1520–1528.
[2]
Kerle, N. Satellite-based damage mapping following the 2006 Indonesia earthquake—How accurate was it? Int. J. Appl. Earth Obs. Geoinf 2010, 12, 466–476.
[3]
Pesaresi, M.; Gerhardinger, A.; Haag, F. Rapid damage assessment of built-up structures using VHR satellite data in tsunami-affected areas. Int. J. Remote Sens 2007, 28, 3013–3036.
[4]
Copernicus Emergency Management Service portal. Available online: http://emergency.copernicus.eu/mapping (accessed on 15 July 2013).
[5]
GMES Component Data. Available online: http://gmesdata.esa.int/web/gsc/dap_document (accessed on 15 July 2013).
[6]
White, J.D.; Ryan, K.C.; Key, C.C.; Running, S.W. Remote sensing of forest fire severity and vegetation recovery. Int. J. Wildland Fire 2006, 6, 125–136.
[7]
Boyle, S.J.; Tsanis, I.K.; Kanaroglou, P.S. Developing geographic information system for land use impact assessment in flooding condition. J. Water Res. Plan. Manag 1998, 124, 89–98.
[8]
Lemoine, G.; Syryczynski, J.; Giovalli, M. Geo-Location Correction Of CBERS 2b Imagery Using Fast Template Matching On A GPU. Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012.
[9]
Nakano, K.; Chikatsu, H. Camera-variant calibration and sensor modeling for practical photogrammetry in archeological sites. Remote Sens 2011, 3, 554–569.
[10]
Fonseca, L.M.G.; Manjunath, B.S. Registration techniques for multisensor remotely sensed imagery. J. Phot. Eng. Remote Sens 1996, 62, 1049–1056.
[11]
Sarvaiya, J.N.; Patnaik, S.; Bombaywala, S. Image Registration by Template Matching Using Normalized Cross-Correlation. Proceedings of International Conference on Advanced Computing, Control, and Telecommunication Technologies, Trivandrum, India, 28–29 December 2009.
[12]
OpenCV Template Matching. Available online: http://docs.opencv.org/doc/tutorials/imgproc/histograms/template_matching/template_matching.html (accessed on 15 July 2013).
[13]
Spacemetric. Available online: http://www.spacemetric.com/ (accessed on 15 July 2013).
[14]
LDCM CAL/VAL Algorithm Description Document. Available online: http://landsat.usgs.gov/documents/LDCM_CVT_ADD.pdf (accessed on 15 July 2013).
[15]
Lemoine, G.; Bielski, C.; Syryczyński, J. Fast surface height determination using multi-angular WorldView-2 orthoready urban scenes. IEEE J. Sel. Top. Appl. Remote Sens 2012, 5, 80–88.
[16]
Frigo, M.; Johnson, S.G. The design and implementation of FFTW3. Proc. IEEE 2005, 93, 216–231.
[17]
NVIDIA CUDA Libraries. Available online: http://developer.nvidia.com/technologies/libraries (accessed on 15 July 2013).
[18]
Thrust Library. Available online: http://thrust.github.com/ (accessed on 15 July 2013).
[19]
Jeong, H.; Cho, N.H.; Jung, U.; Lee, C.; Kim, J.Y.; Kim, J. Ultra-fast displaying spectral domain optical doppler tomography system using a graphics processing unit. Sensors 2012, 12, 6920–6929.
[20]
Shams, R.; Sadeghi, P.; Kennedy, R.; Hartley, R. A survey of medical image registration on multicore and the GPU. IEEE Signal Proc. Mag 2010, 2, 50–60.
[21]
Reguera-Salgado, J.; Calvino-Cancela, M.; Martin-Herrero, J. GPU geocorrection for airborne pushbroom imagers. IEEE Trans. Geosci. Remote Sens 2012, 50, 4409–4419.
[22]
Reguera-Salgado, J.; Martin-Herrero, J. High PERFORMANCE GCP-Based Particle Swarm Optimization of Orthorectification of Airborne Pushbroom Imagery. Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012.
[23]
Reguera-Salgado, J.; Martin-Herrero, J. Real Time Orthorectification of High Resolution Airborne Pushbroom Imagery. Proceedings of SPIE Conference High Performance Computing, Prague, Czech Republic, 19–20 September 2011.
[24]
Opsahl, T.; Haavardsholm, T.; Winjum, I. Real-time georeferencing for an airborne hyperspectral imaging system. Proc. SPIE 2011, 8048, doi:10.1117/12.885069.
[25]
Gonzalez, C.; Sanchez, S.; Paz, A.; Resano, J.; Mozos, D.; Plaza, A. Use of FPGA or GPU-based architectures for remotely sensed hyperspectral image processing. VLSI J 2013, 46, 89–103.
The DMC Consortium. Available online: http://www.dmcii.com/?page_id=7073 (accessed on 15 July 2013).
[28]
TerraColor? Landsat Satellite Images of Earth by Earthstar Geographics. Available online: http://www.terracolor.net/ (accessed on 15 July 2013).
[29]
Centro de Descargas del CNIG. Available online: http://centrodedescargas.cnig.es/CentroDescargas/index.jsp (accessed on 15 July 2013).
[30]
Rembold, F.; Atzberger, C.; Savin, I.; Rojas, O. Using low resolution satellite imagery for yield prediction and yield anomaly detection. Remote Sens 2013, 5, 1704–1733.