A methodology to estimate the discharge along rivers, even poorly gauged ones, taking advantage of water level measurements derived from satellite altimetry is proposed. The procedure is based on the application of the Rating Curve Model (RCM), a simple method allowing for the estimation of the flow conditions in a river section using only water levels recorded at that site and the discharges observed at another upstream section. The European Remote-Sensing Satellite 2, ERS-2, and the Environmental Satellite, ENVISAT, altimetry data are used to provide time series of water levels needed for the application of RCM. In order to evaluate the usefulness of the approach, the results are compared with the ones obtained by applying an empirical formula that allows discharge estimation from remotely sensed hydraulic information. To test the proposed procedure, the 236 km-reach of the Po River is investigated, for which five in?situ stations and four satellite tracks are available. Results show that RCM is able to appropriately represent the discharge, and its performance is better than the empirical formula, although this latter does not require upstream hydrometric data. Given its simple formal structure, the proposed approach can be conveniently utilized in ungauged sites where only the survey of the cross-section is needed.
References
[1]
Chow, V.T.; Maidment, D.; Mays, L. Applied Hydrology; McGraw-Hill: New York, NY, USA, 1988.
[2]
Moramarco, T.; Saltalippi, C.; Singh, V.P. Estimating the cross-sectional mean velocity in natural channels using Chiu’s velocity distribution. J. Hydrol. Eng 2004, 9, 42–50.
[3]
Di Baldassarre, G.; Montanari, A. Uncertainty in river discharge observations: A quantitative analysis. Hydrol. Earth Syst. Sci 2009, 13, 913–921.
[4]
Vorosmarty, C.; Birkett, C.; Dongman, L.; Lettenmaier, D.P.; Kim, Y.; Rodriguez, E.; Emmit, G.D.; Plant, W.; Wood, E. NASA Post-2002 Land Surface Hydrology Mission Component for Surface Water Monitoring, HYDRA_SAT HYDRlogical Altimetry SATellite. Proceedings of NASA Post 2002 LSHP Planning Workshop, Irvine, CA, USA, 12–14 April 1999; p. 53.
[5]
Calmant, S.; Seyler, F. Continental surface water from satellite altimetry. Compt. Rend. Geosci 2006, 338, 1113–1122.
[6]
Global water data: A newly endangered species. EOS Trans. AGU 2001, 82, 54.
[7]
Biancamaria, S.; Hossain, F.; Lettenmaier, D.P. Forecasting transboundary river water elevations from space. Geophys. Res. Lett 2011, 38, L11401.
[8]
Birkett, C.M. The contribution of Topex/Poseidon to the global monitoring of climatically sensitive lakes. J. Geophys. Res 1995, 100, 25179–25204.
[9]
Coe, M.T.; Birkett, C.M. Calculation of river discharge and prediction of lake height from satellite radar altimetry: example for the Lake Chad basin. Water Resour. Res 2004, 40, W10205.
[10]
Morris, C.S.; Gill, S.K. Variation of Great-Lakes water levels derived from Geosat altimetry. Water Resour. Res 1994, 30, 1009–1017.
Global NRT Product Locations. Available online: http://earth.esa.int/riverandlake (accessed on 30 May 2013).
[13]
Koblinsky, C.J.; Clarke, R.T.; Brenner, A.C.; Frey, H. Measurement of River Level variations with Satellite Altimetry. Water Resour. Res 1993, 29, 1839–1848.
[14]
Birkett, C.M. Contribution of the Topex NASA radar altimeter to the global monitoring of large rivers and wetlands. Water Resour. Res 2004, 34, 1223–1239.
[15]
De Oliveira Campos, I.; Mercier, F.; Maheu, C.; Cochonneau, G.; Kosuth, P.; Blitzkow, D.; Cazenave, A. Temporal variations of river basin waters from Topex/ Poseidon satellite altimetry. Application to the Amazon basin. Comp. Rend. l’Acad. Sci.–Series IIA–Earth Planet. Sci 2001, 333, 633–643.
[16]
Frappart, F.; Calmant, S.; Cauhope, M.; Seyler, F.; Cazenave, A. Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin. Remote Sens. Environ 2006, 100, 252–264.
[17]
Leon, J.G.; Calmant, S.; Seyler, F.; Bonnet, M.P.; Cauhope, M.; Frappart, F.; Filizola, N.; Fraizy, P. Rating curves and estimation of average water depth at the upper Negro River based on satellite altimeter data and modeled discharges. J. Hydrol 2006, 328, 481–496.
[18]
Zakharova, E.A.; Kouraev, A.V.; Cazenave, A.; Seyler, F. Amazon River discharge estimated from TOPEX/Poseidon altimetry. Compt. Rend. Geosci 2006, 338, 188–196.
[19]
Santos da Silva, J.; Calmant, S.; Seyler, F.; Rotunno Filho, O.C.; Cochonneau, G.; Mansur, W.J. Water levels in the Amazon basin derived from the ERS 2 and ENVISAT radar altimetry missions. Remote Sens. Environ 2010, 114, 2160–2181.
[20]
Kouraev, A.V.; Zakharova, E.A.; Samain, O.; Mognard, N.M.; Cazenave, A. Ob’ river discharge from TOPEX/Poseidon satellite altimetry (1992–2002). Remote Sens. Environ 2004, 93, 238–245.
[21]
Frappart, F.; Seyler, F.; Martinez, J.M.; Leon, J.G.; Cazenave, A. Floodplain water storage in the Negro River basin estimated from microwave remote sensing of inundation area and water levels. Remote Sens. Environ 2005, 99, 387–399.
[22]
Getirana, A.C.V.; Bonnet, M.P.; Calmant, S.; Roux, E.; Rotunno, O.C.; Mansur, W.J. Hydrological monitoring of poorly gauged basins based on rainfall-runoff modeling and spatial altimetry. J. Hydrol 2009, 379, 205–219.
Birkinshaw, S.J.; O’Donnell, G.M.; Moore, P.; Kilsby, C.G.; Fowler, H.J.; Berry, P.A.M. Using satellite altimetry data to augment flow estimation techniques on the Mekong River. Hydrol. Process 2010, 24, 3811–3825.
[25]
Birkinshaw, S.J.; Moore, P.; Kilsby, C.G.; O’Donnell, G.M.; Hardy, A.J.; Berry, P.A.M. Daily discharge estimation at ungauged river sites using remote sensing. Hydrol. Process. 2012, doi:10.1002/hyp.9647.
[26]
Birkett, C.M.; Mertes, L.; Dunne, T.; Costa, M.H.; Jasinski, M.J. Surface water dynamics in the Amazon Basin: Application of satellite radar altimetry. J. Geophys. Res. 2002, 107, doi:10.1029/2001JD000609.
[27]
Bjerklie, D.M.; Dingman, S.L.; Vorosmarty, C.J.; Bolster, C.H.; Congalton, R.G. Evaluating the potential for measuring river discharge from space. J. Hydrol 2003, 278, 17–38.
[28]
Getirana, A.C.V. Integrating spatial altimetry data into the automatic calibration of hydrological models. J. Hydrol 2010, 387, 244–255.
[29]
Milzow, C.; Krogh, P.E.; Bauer-Gottwein, P. Combining satellite radar altimetry, SAR surface soil moisture and GRACE total storage changes for hydrological model calibration in a large poorly gauged catchment. Hydrol. Earth Syst. Sci 2010, 15, 1729–1743.
[30]
Sun, W.C.; Ishidaira, H.; Bastola, S. Towards improving river discharge estimation in ungauged basins: Calibration of rainfall-runoff models based on satellite observations of river flow width at basin outlet. Hydrol. Earth Syst. Sci 2010, 14, 2011–2022.
[31]
Moramarco, T.; Singh, V.P. Simple method for relating local stage and remote discharge. J. Hydrol. Eng 2001, 6, 78–81.
[32]
Moramarco, T.; Barbetta, S.; Melone, F.; Singh, V.P. Relating local stage and remote discharge with significant lateral inflow. J. Hydrol. Eng 2005, 10, 58–69.
[33]
Barbetta, S.; Franchini, M.; Melone, F.; Moramarco, T. Enhancement and comprehensive evaluation of the Rating Curve Model for different river sites. J. Hydrol. 2012, 464–465, 376–387.
[34]
Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models, Part I: A discussion of principles. J. Hydrol 1970, 10, 282–290.
[35]
Barbetta, S.; Moramarco, T.; Franchini, M.; Melone, F.; Brocca, L.; Singh, V.P. Case study: Improving real-time stage forecasting Muskingum model by incorporating the Rating Curve Model. J. Hydrol. Eng 2011, 16, 540–557.
[36]
Tayfur, G.; Barbetta, S.; Moramarco, T. Genetic Algorithm based discharges estimation at sites receiving lateral inflows. J. Hydrol. Eng 2009, 14, 463–474.
[37]
Lakes, Rivers and Wetlands Water Levels from Satellite Altimetry. Available online: http://www.legos.obs-mip.fr/en/soa/hydrologie/hydroweb/ (accessed on 30 May 2013).
[38]
Crop Explorer. Available online: http://www.pecad.fas.usda.gov/cropexplorer/global_reservoir/ (accessed on 30 May 2013).
[39]
CASH, Contribution of Satellite Altimetry to Hydrology. Available online: http://www.cls.fr/html/oceano/general/applications/cash_en.html (accessed on 15 July 2013).
[40]
Barbetta, S.; Brocca, L.; Tarpanelli, A.; Melone, F.; Singh, V.P.; Moramarco, T. Discharge Assessment at Ungauged River Sites by Using Satellite Altimetry Data: The Case Study of the Po River (Italy). Proceedings of International Conference 6th International Perspective on Water Resources & the Environment Conference (IPWE 2013), Izmir, Turkey, 7–9 January 2013; p. 10.
[41]
Khan, S.I.; Hong, Y.; Vergara, H.J.; Gourley, J.J.; Brakenridge, G.R.; De Groeve, T.; Flaming, Z.L.; Policelli, F.; Yong, B. Microwave Satellite data for hydrologic modeling in ungauged basins. IEEE Geosci. Remote Sens. Lett 2012, 9, 663–667.
[42]
Moramarco, T.; Corato, G.; Melone, F.; Singh, V.P. An entropy-based method for determining the flow depth distribution in natural channels. J. Hydrol 2013, 497, 176–188.
[43]
Mersel, M.K.; Smith, L.C.; Andreadis, K.M.; Durand, M.T. Estimation of river depth from remotely sensed hydraulic relationships. Water Resour. Res 2013, 49, 1–15.
[44]
Tarpanelli, A.; Brocca, L.; Melone, F.; Moramarco, T.; Lacava, T.; Faruolo, M.; Pergola, N.; Tramutoli, V. Toward the estimation of river discharge variations using MODIS data in ungauged basins. Remote Sens. Environ 2013, 136, 47–55.