Imaging using lightweight, unmanned airborne vehicles (UAVs) is one of the most rapidly developing fields in remote sensing technology. The new, tunable, Fabry-Perot interferometer-based (FPI) spectral camera, which weighs less than 700 g, makes it possible to collect spectrometric image blocks with stereoscopic overlaps using light-weight UAV platforms. This new technology is highly relevant, because it opens up new possibilities for measuring and monitoring the environment, which is becoming increasingly important for many environmental challenges. Our objectives were to investigate the processing and use of this new type of image data in precision agriculture. We developed the entire processing chain from raw images up to georeferenced reflectance images, digital surface models and biomass estimates. The processing integrates photogrammetric and quantitative remote sensing approaches. We carried out an empirical assessment using FPI spectral imagery collected at an agricultural wheat test site in the summer of 2012. Poor weather conditions during the campaign complicated the data processing, but this is one of the challenges that are faced in operational applications. The results indicated that the camera performed consistently and that the data processing was consistent, as well. During the agricultural experiments, promising results were obtained for biomass estimation when the spectral data was used and when an appropriate radiometric correction was applied to the data. Our results showed that the new FPI technology has a great potential in precision agriculture and indicated many possible future research topics.
References
[1]
Hunt, E.R., Jr.; Hively, W.D.; Fujikawa, S.J.; Linden, D.S.; Daughtry, C.S.T.; McCarty, G.W. Acquisition of NIR-Green-Blue digital photographs from unmanned aircraft for crop monitoring. Remote Sens 2010, 2, 290–305.
[2]
Lelong, C.C.D.; Burger, P.; Jubelin, G.; Roux, B.; Labbé, S.; Baret, F. Assessment of unmanned aerial vehicles imagery for quantitative monitoring of wheat crop in small plots. Sensors 2008, 8, 3557–3585.
[3]
Zhou, G. Near real-time orthorectification and mosaic of small UAV video flow for time-critical event response. IEEE Trans. Geosci. Remote Sens 2009, 47, 739–747.
[4]
Berni, J.A.; Zarco-Tejada, P.J.; Suárez, L.; Fereres, E. Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Trans. Geosci. Remote Sens 2009, 47, 722–738.
[5]
Laliberte, A.S.; Goforth, M.A.; Steele, C.M.; Rango, A. Multispectral remote sensing from unmanned aircraft: Image processing workflows and applications for rangeland environments. Remote Sens 2011, 3, 2529–2551.
[6]
Saari, H.; Pellikka, I.; Pesonen, L.; Tuominen, S.; Heikkil?, J.; Holmlund, C.; M?kynen, J.; Ojala, K.; Antila, T. Unmanned Aerial Vehicle (UAV) operated spectral camera system for forest and agriculture applications. Proc. SPIE 2011, 8174, doi:10.1117/12.897585.
[7]
Hruska, R.; Mitchell, J.; Anderson, M.; Glenn, N.F. Radiometric and geometric analysis of hyperspectral imagery acquired from an unmanned aerial vehicle. Remote Sens 2012, 4, 2736–2752.
[8]
Kelcey, J.; Lucieer, A. sensor correction of a 6-band multispectral imaging sensor for UAV remote sensing. Remote Sens 2012, 4, 1462–1493.
[9]
Zarco-Tejada, P.J.; Gonzalez-Dugo, V.; Berni, J.A.J. Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress using a micro-hyperspectral images and a thermal camera. Remote Sens. Environ 2012, 117, 322–337.
[10]
Delauré, B.; Michiels, B.; Biesemans, J.; Livens, S.; Van Achteren, T. The Geospectral Camera: A Compact and Geometrically Precise Hyperspectral and High Spatial Resolution Imager. Proceedings of the ISPRS Hannover Workshop 2013, Hannover, Germany, 21–24 May 2013.
[11]
Nagai, M.; Chen, T.; Shibasaki, R.; Kumgai, H.; Ahmed, A. UAV-borne 3-D mapping system by multisensory integration. IEEE Trans. Geosci. Remote Sens 2009, 47, 701–708.
[12]
Jaakkola, A.; Hyypp?, J.; Kukko, A.; Yu, X.; Kaartinen, H.; Lehtom?ki, M.; Lin, Y. A low-cost multi-sensoral mobile mapping system and its feasibility for tree measurements. ISPRS J. Photogramm. Remote Sens 2010, 65, 514–522.
[13]
Wallace, L.; Lucieer, A.; Watson, C.; Turner, D. Development of a UAV-LiDAR system with application to forest inventory. Remote Sens 2012, 4, 1519–1543.
Alchanatis, V.; Cohen, Y. Spectral and Spatial Methods of Hyperspectral Image Analysis for Estimation of Biophysical and Biochemical Properties of Agricultural Crops. In Hyperspectral Remote Sensing of Vegetation, 1st ed; Thenkabail, P.S., Lyon, J.G., Huete, A., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 289–305.
[16]
Zhang, C.; Kovacs, J.M. The application of small unmanned aerial systems for precision agriculture: a review. Precis. Agric 2012, 13, 693–712.
[17]
Yao, H.; Tang, L.; Tian, L.; Brown, R.L.; Bhatngar, D.; Cleveland, T.E. Using Hyperspectral Data in Precision Farming Applications. In Hyperspectral Remote Sensing of Vegetation, 1st ed.; Thenkabail, P.S., Lyon, J.G., Huete, A., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 591–607.
[18]
Zecha, C.W.; Link, J.; Claupein, W. Mobile sensor platforms: Categorisation and research applications in precision farming. J. Sens. Sens. Syst 2013, 2, 51–72.
[19]
Nackaerts, K.; Delauré, B.; Everaerts, J.; Michiels, B.; Holmlund, C.; M?kynen, J.; Saari, H. Evaluation of a lightweigth UAS-prototype for hyperspectral imaging. Int. Arch. Photogramm. Remote Sens. Spat. Infor. Sci 2010, 38, 478–483.
[20]
Honkavaara, E.; Kaivosoja, J.; M?kynen, J.; Pellikka, I.; Pesonen, L.; Saari, H.; Salo, H.; Hakala, T.; Markelin, L.; Rosnell, T. Hyperspectral reflectance signatures and point clouds for precision agriculture by light weight UAV imaging system. ISPRS Annal. Photogramm. Remote Sens. Spat. Inf. Sci 2012, I-7, 353–358.
[21]
P?l?nen, I.; Salo, H.; Saari, H.; Kaivosoja, J.; Pesonen, L.; Honkavaara, E. Biomass estimator for NIR image with a few additional spectral band images taken from light UAS. Proc. SPIE , 2012(8369), doi:10.1117/12.918551.
[22]
Scholten, F.; Wewel, F. Digital 3D-data acquisition with the high resolution stereo camera-airborne (HRSC-A). Int. Arch. Photogramm. Remote Sens. Spat. Infor. Sci 2000, 33, 901–908.
[23]
Leberl, F.; Irschara, A.; Pock, T.; Meixner, P.; Gruber, M.; Scholz, S.; Wiechert, A. Point clouds: Lidar versus 3D vision. Photogramm. Eng. Remote Sens 2010, 76, 1123–1134.
[24]
Haala, N.; Hastedt, H.; Wolf, K.; Ressl, C.; Baltrusch, S. Digital photogrammetric camera evaluation—Generation of digital elevation models. Photogramm. Fernerkund. Geoinf 2010, 2, 99–115.
[25]
Hirschmüller, H. Semi-Global Matching: Motivation, Development and Applications. In Photogrammetric Week 2011; Fritsch, D., Ed.; Wichmann Verlag: Heidelberg, Germany, 2011; pp. 173–184.
[26]
Rosnell, T.; Honkavaara, E. Point cloud generation from aerial image data acquired by a quadrocopter type micro unmanned aerial vehicle and a digital still camera. Sensors 2012, 12, 453–480.
[27]
Rosnell, T.; Honkavaara, E.; Nurminen, K. On geometric processing of multi-temproal image data collected by light UAV systems. Int. Arch. Photogramm. Remote Sens. Spat. Infor. Sci 2011, 38, 63–68.
[28]
Schaepman-Strub, G.; Schaepman, M.E.; Painter, T.H.; Dangel, S.; Martonchik, J.V. Reflectance quantities in optical remote sensing—Definitions and case studies. Remote Sen. Environ 2006, 103, 27–42.
[29]
Honkavara, E.; Hakala, T.; Saari, H.; Markelin, L.; M?kynen, J.; Rosnell, T. A process for radiometric correction of UAV image blocks. Photogramm. Fernerkund. Geoinfor 2012, doi:10.1127/1432-8364/2012/0106.
[30]
F?rstner, W.; Gülch, E. A Fast Operator for Detection and Precise Location of Distinct Points, Corners and Centers of Circular Features. Proceedings of Intercommission Conference on Fast Processing of Photogrammetric Data, Interlaken, Swizerland, 2–4 June 1987; pp. 281–305.
[31]
Beisl, U. New Method for Correction of Bidirectional Effects in Hyperspectral Images. Proceedings of Remote Sensing for Environmental Monitoring, GIS Applications, and Geology, Toulouse, France, 17 September 2001.
[32]
Walthall, C.L.; Norman, J.M.; Welles, J.M.; Campbell, G.; Blad, B.L. Simple equation to approximate the bidirectional reflectance from vegetative canopies and bare soil surfaces. Appl. Opt 1985, 24, 383–387.
Kuvatekniikka Oy Patrik Raski. Available online: http://kuvatekniikka.com/ (accessed on 5 September 2013).
[35]
Intersil ISL29004 Datasheet. Available online: http://www.intersil.com/content/dam/Intersil/documents/fn62/fn6221.pdf (accessed on 9 October 2013).
[36]
Kotsiantis, S.B. Supervised machine learning: A review of classification techniques. Informatica 2007, 31, 249–268.
[37]
National Land Survey of Finland Open Data License. Available on line: http://www.maanmittauslaitos.fi/en/NLS_open_data_licence_version1_20120501 (accessed on 10 October 2013).
[38]
Chiang, K.-W.; Tsai, M.-L.; Chu, C.-H. The development of an UAV borne direct georeferenced photogrammetric platform for ground control point free applications. Sensors 2012, 12, 9161–9180.
[39]
Turner, D.; Lucieer, A.; Watson, C. An automated technique for generating georectified mosaics from ultra-high resolution Unmanned Aerial Vehicle (UAV) imagery, based on Structure from Motion (SfM) point clouds. Remote Sens 2012, 4, 1392–1410.
[40]
Snavely, N. Bundler: Structure from Motion (SFM) for Unordered Image Collections, Available online: phototour.cs.washington.edu/bundler/ (accessed on 12 July 2013).
[41]
Mathews, A.J.; Jensen, J.L.R. Visualizing and quantifying vineyard canopy LAI using an Unmanned Aerial Vehicle (UAV) collected high density structure from motion point cloud. Remote Sens 2013, 5, 2164–2183.
[42]
Honkavaara, E.; Arbiol, R.; Markelin, L.; Martinez, L.; Cramer, M.; Bovet, S.; Chandelier, L.; Ilves, R.; Klonus, S.; Marshal, P.; et al. Digital airborne photogrammetry—A new tool for quantitative remote sensing?—A state-of-the-Art review on radiometric aspects of digital photogrammetric images. Remote Sens 2009, 1, 577–605.
[43]
Richter, R.; Schl?pfer, D. Geo-atmospheric processing of airborne imaging spectrometry data. Part 2: Atmospheric/topographic correction. Int. J. Remote Sens 2002, 23, 2631–2649.
[44]
Richter, R.; Kellenberger, T.; Kaufmann, H. Comparison of topographic correction methods. Remote Sens 2009, 1, 184–196.
[45]
Beisl, U.; Telaar, J.; von Sch?nemark, M. Atmospheric Correction, Reflectance Calibration and BRDF Correction for ADS40 Image Data. Proceedings of the XXI ISPRS Congress, Commission VII, Beijing, China, 3–11 July 2008.
[46]
Chandelier, L.; Martinoty, G. Radiometric aerial triangulation for the equalization of digital aerial images and orthoimages. Photogramm. Eng. Remote Sens 2009, 75, 193–200.
[47]
Collings, S.; Cacetta, P.; Campbell, N.; Wu, X. Empirical models for radiometric calibration of digital aerial frame mosaics. IEEE Trans. Geosci. and Remote Sens 2011, 49, 2573–2588.
[48]
López, D.H.; García, B.F.; Piqueras, J.G.; A?cázar, G.V. An approach to the radiometric aerotriangulation of photogrammetric images. ISPRS J. Photogramm. Remote Sens 2011, 66, 883–893.
[49]
Atzberger, C. Advances in remote sensing of agriculture: Context description, existing operational monitoring systems and major information needs. Remote Sens 2013, 5, 949–981.
[50]
Watts, A.C.; Ambrosia, V.G.; Hinkley, E.A. Unmanned Aircraft Systems in remote sensing and scientific research: Classification and considerations of use. Remote Sens 2012, 4, 1671–1692.