The Application of Deep Convective Clouds in the Calibration and Response Monitoring of the Reflective Solar Bands of FY-3A/MERSI (Medium Resolution Spectral Imager)
Based on simulated reflectance, deep convective clouds (DCC) can be used as an invariant target to monitor the radiometric response degradation of the FY-3A/MERSI (Medium Resolution Spectral Imager) reflective solar bands (RSBs). The long-term response of the MERSI RSBs can easily be predicted using a quadratic fit of the monthly DCC mean reflectance, except for bands 6 and 7, which suffer from instrument anomalies. DCC-based degradations show that the blue bands (λ < 500 nm) and water-vapor bands have degraded significantly, whereas for near-infrared bands, the total degradations in four years are within 3% (excluding bands 3 and 20). For most bands, the degradation rates are greatest during the first year in orbit and decrease over time. The FY-3A/MERSI degradation results derived from DCC are consistent within 2.5%, except for bands, 11, 18 and 19, when compared with Aqua/MODIS(Moderate Resolution Imaging Sepetroradiometer) inter-calibration, multi-site invariant earth target calibration and the CRCS(Chinese Radiometric Calibration Site) Dunhuang desert vicarious calibration methods. Overall, the 2σ/mean degradation uncertainty for most MERSI bands was within 3%, validating the temporal stability of the DCC monthly mean reflectances. The DCC method has reduced the degradation uncertainties for MERSI water vapor bands over other methods. This is a significant advantage of the DCC calibration method. The saturation of some MERSI bands may hinder the effectiveness of the DCC calibration approach.
References
[1]
Dinguirard, M.; Slater, P.N. Calibration of space multispectral imaging sensor: A review. Remote Sens. Environ 1999, 68, 194–205.
[2]
Hu, X.Q.; Zhang, Y.X.; Qiu, K.M. In-flight radiometric calibration for VNIR channels of FY-1C satellite sensor by using irradiance based method (In Chinese). J. Remote Sens 2003, 7, 458–464.
[3]
Xiong, X.; Barnes, W. An overview of MODIS radiometric calibration and characterization. Adv. Atmos. Sci 2006, 23, 69–79.
[4]
Rao, C.R.N.; Chen, J. Inter-satellite calibration linkages for the visible and near-infrared channels of the Advanced Very High Resolution Radiometer on the NOAA-7, -9, and -11 spacecraft. Int. J. Remote Sens 1995, 16, 1931–1942.
[5]
Koslowsky, D. Signal degradation of the AVHRR shortwave channels of NOAA 11 and NOAA 14 by daily monitoring of desert targets. Adv. Space Res 1997, 19, 1355–1358.
[6]
Minnis, P.; Nguyen, L.D.; Doelling, D.R.; Young, D.F.; Miller, W.F.; Kratz, D.P. Rapid calibration of operational and research meteorological satellite imagers. J. Atmos. Oceanic Ocean. Technol 2002, 19, 1233–1249.
[7]
Heidinger, A.K. Calibration of visible and near-infrared channels of the NOAA-12 AVHRR using time series of observations over deserts. Int. J. Remote Sens 2003, 24, 3635–3649.
[8]
Six, D.; Fily, M.; Alvain, S.; Henryc, P.; Benoist, J.P. Surface characterisation of the Dome Dome Concordia area (Antarctica) as a potential satellite calibration site, using Spot 4/Vegetation instrument. Remote Sens. Environ 2004, 89, 83–94.
[9]
Eplee, R.E.; Barnes, R.A.; Patt, F.S.; Meister, G.; McClain, C.R. SeaWiFS Lunar Calibration Methodology after Six Years on Orbit. Proceedings of Earth Observing Systems IX, Denver, CO, USA, 26 October 2004.
[10]
Mitchell, D.G. Global Space-Based Inter-Calibration System (GSICS). Proc. SPIE 2007, 6684, doi:10.1117/12.735246.
[11]
Goldberg, M.; Ohring, G.; Butler, J.; Cao, C.; Datla, R.; Doelling, D.V.; Hewison, G.T.; Iacovazzi, B.; Kim, D.; Kurino, T.; et al. The global space-based inter-calibration system. Bull. Am. Meteorol. Soc 2011, 92, 467–475.
[12]
Doelling, D.R.; Nguyenb, L.; Minis, P. On the Use of Deep Convective Clouds to Calibrate AVHRR Data. Proceedings of Earth Observing System IX, Denver, CO, USA, 26 October 2004.
[13]
Hu, Y.; Wielicki, B.A.; Yang, P.; Stackhouse, P.W.; Lin, B.; Young, D.F. Application of deep convective cloud albedo observation to satellite-based study of the terrestrial atmosphere: Monitoring the stability of spaceborne measurements and assessing absorption anomaly. IEEE Trans. Geosci. Remote Sens 2004, 42, 2594–2599.
[14]
Minnis, P.; Doelling, D.R.; Nguyen, L. Assessment of the visible channel calibrations of the VIRS on TRMM and MODIS on Aqua and Terra. J. Atmos. Ocean. Technol 2008, 25, 385–400.
[15]
Fougnie, B.; Bach, R. Monitoring of radiometric sensitivity changes of space sensors using deep convective clouds: Operational application to PARASOL. IEEE Trans. Geosci. Remote Sens 2009, 47, 851–861.
[16]
Doelling, D.R.; Daniel, M.; Benjamin, R.S.; Rajendra, B.; Arun, G. The characterization of deep convective clouds as an invariant calibration target and as a visible calibration technique. IEEE Trans. Geosci. Remote Sens 2013, 51, 1147–1159.
[17]
Yang, J.; Dong, C.H.; Lu, N.M. FY-3A: The new polar-orbiting meteorological satellite of China. Acta Meteorol. Sin 2009, 67, 0501–0509.
[18]
Dong, C.; Yang, J.; Zhang, W.; Yang, Z.; Lu, N.; Shi, J.; Zhang, P.; Liu, Y.; Cai, B. An overview of a new Chinese weather satellite FY-3A. Bull. Am. Meteorol. Soc 2009, 90, 1531–1544.
[19]
Hu, X.Q.; Sun, L.; Liu, J.J.; Ding, L.; Wang, X.; Li, Y.; Zheng, Z.J.; Xu, N.; Chen, L. Calibration for the solar reflective bands of medium resolution spectral imager onboard FY-3A. IEEE Trans. Geosci. Remote Sens 2012, 50, 4915–4928.
[20]
Hu, X.Q.; Liu, J.J.; Sun, L.; Rong, Z.G.; Li, Y.; Zhang, Y.; Zheng, Z.; Wu, R.; Zhang, L.; Gu, X. Characterization of CRCS Dunhuang test site and vicarious calibration utilization for Fengyun (FY) series sensors. Can. J. Remote Sens 2010, 36, 566–582.
[21]
Sun, L.; Hu, X.Q.; Guo, M.H.; Xu, N. Multi-site calibration tracking for FY-3A mersi solar bands. IEEE Trans. Geosci. Remote Sens 2013, 50, 4929–4942.
[22]
Ricchiazzi, P.; Yang, S.; Gautier, C.; Sowle, D. SBDART: A research and teaching software tool for plane-parallel radiative transfer in the Earth’s atmosphere. Bull. Am. Meteorol. Soc 1998, 79, 2101–2114.
[23]
Xiong, X.; Sun, J.; Barnes, W.; Salomonson, V.; Esposito, J.; Erives, H.; Guenther, B. Multiyear on-orbit calibration and performance of Terra MODIS solar reflective bands. IEEE Trans. Geosci. Remote Sens 2007, 45, 879–889.
[24]
Xiong, X.; Sun, J.; Xie, X.; Barnes, W.L.; Salomonson, V.V. On-orbit calibration and performance of Aqua MODIS reflective solar bands. IEEE Trans. Geosci. Remote Sens 2010, 48, 535–546.
[25]
Sohn, B.J.; Ham, S.H.; Han, Y. Possibility of the visible-channel calibration using deep convective clouds overshooting the TTL. J. Appl. Meteorol. Climatol 2009, 48, 2272–2283.
[26]
Sterckx, S.; Stefan, L.; Stefan, A. Rayleigh, deep convective clouds, and cross-sensor desert vicarious calibration validation for the PROBA-V mission. IEEE Trans. Geosci. Remote Sens 2013, 51, 1437–1452.