全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Trait Estimation in Herbaceous Plant Assemblages from in situ Canopy Spectra

DOI: 10.3390/rs5126323

Keywords: field spectroscopy, plant traits, canopy surface, leaf surface, SLA, LAI, herbaceous plant assemblages, hyperspectral reflectance

Full-Text   Cite this paper   Add to My Lib

Abstract:

Estimating plant traits in herbaceous plant assemblages from spectral reflectance data requires aggregation of small scale trait variations to a canopy mean value that is ecologically meaningful and corresponds to the trait content that affects the canopy spectral signal. We investigated estimation capacities of plant traits in a herbaceous setting and how different trait-aggregation methods influence estimation accuracies. Canopy reflectance of 40 herbaceous plant assemblages was measured in situ and biomass was analysed for N, P and C concentration, chlorophyll, lignin, phenol, tannin and specific water concentration, expressed on a mass basis (mg?g ?1). Using Specific Leaf Area (SLA) and Leaf Area Index (LAI), traits were aggregated to two additional expressions: mass per leaf surface (mg?m ?2) and mass per canopy surface (mg?m ?2). All traits were related to reflectance using partial least squares regression. Accuracy of trait estimation varied between traits but was mainly influenced by the trait expression. Chlorophyll and traits expressed on canopy surface were least accurately estimated. Results are attributed to damping or enhancement of the trait signal upon conversion from mass based trait values to leaf and canopy surface expressions. A priori determination of the most appropriate trait expression is viable by considering plant growing strategies.

References

[1]  Lavorel, S.; Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the holy grail. Funct. Ecol 2002, 16, 545–556.
[2]  Pérez-Harguindeguy, N.; Díaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.K.; Craine, J.M.; Gurvich, D.E.; et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot 2013, 61, 167–234.
[3]  Svoray, T.; Perevolotsky, A.; Atkinson, P.M. Ecological sustainability in rangelands: The contribution of remote sensing. Int. J. Remote Sens 2013, 34, 6216–6242.
[4]  Ustin, S.L. Remote sensing of canopy chemistry. Proc. Natl. Acad. Sci. USA 2013, 110, 804–805.
[5]  Ramoelo, A.; Skidmore, A.K.; Cho, M.A.; Mathieu, R.; Heitk?nig, I.M.A.; Dudeni-Tlhone, N.; Schlerf, M.; Prins, H.H.T. Non-linear partial least square regression increases the estimation accuracy of grass nitrogen and phosphorus using in situ hyperspectral and environmental data. ISPRS J. Photogramm. Remote Sens 2013, 82, 27–40.
[6]  Curran, P.J.; Dungan, J.L.; Macler, B.A.; Plummer, S.E.; Peterson, D.L. Reflectance spectroscopy of fresh whole leaves for the estimation of chemical concentration. Remote Sens. Environ 1992, 39, 153–166.
[7]  Doughty, C.E.; Asner, G.P.; Martin, R.E. Predicting tropical plant physiology from leaf and canopy spectroscopy. Oecologia 2011, 165, 289–299.
[8]  Darvishzadeh, R.; Skidmore, A.; Schlerf, M.; Atzberger, C. Inversion of a radiative transfer model for estimating vegetation lai and chlorophyll in a heterogeneous grassland. Remote Sens. Environ 2007, 112, 2592–2604.
[9]  Hansen, P.; Schjoerring, J. Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens. Environ 2003, 86, 542–553.
[10]  Clevers, J.G.P.W.; Kooistra, L. Using hyperspectral remote sensing data for retrieving canopy chlorophyll and nitrogen content. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens 2012, 5, 574–583.
[11]  Knox, N.M.; Skidmore, A.K.; Prins, H.H.; Asner, G.P.; van der Werff, H.; de Boer, W.F.; van der Waal, C.; de Knegt, H.J.; Kohi, E.M.; Slotow, R. Dry season mapping of savanna forage quality, using the hyperspectral carnegie airborne observatory sensor. Remote Sens. Environ 2011, 115, 1478–1488.
[12]  Knyazikhin, Y.; Schull, M.A.; Stenberg, P.; M?ttus, M.; Rautiainen, M.; Yang, Y.; Marshak, A.; Carmona, P.L.; Kaufmann, R.K.; Lewis, P. Hyperspectral remote sensing of foliar nitrogen content. Proc. Natl. Acad. Sci. USA 2013, 110, E185–E192.
[13]  Wallace, O.C.; Qi, J.; Heilma, P.; Marsett, R.C. Remote sensing for cover change assessment in southeast arizona. J. Range Manage 2003, 56, 402–409.
[14]  Skidmore, A.K.; Ferwerda, J.G.; Mutanga, O.; Van Wieren, S.E.; Peel, M.; Grant, R.C.; Prins, H.H.; Balcik, F.B.; Venus, V. Forage quality of savannas—Simultaneously mapping foliar protein and polyphenols for trees and grass using hyperspectral imagery. Remote Sens. Environ 2010, 114, 64–72.
[15]  Asner, G.P.; Martin, R.E. Canopy phylogenetic, chemical and spectral assembly in a lowland amazonian forest. New Phytol 2011, 189, 999–1012.
[16]  Verrelst, J.; Geerling, G.W.; Sykora, K.V.; Clevers, J.G.P.W. Mapping of aggregated floodplain plant communities using image fusion of casi and lidar data. Int. J. Appl. Earth Obs. Geoinf 2009, 11, 83–94.
[17]  Schmidt, K.S.; Skidmore, A.K.; Kloosterman, E.H.; Van Oosten, H.; Kumar, L.; Janssen, J.A.M. Mapping coastal vegetation using an expert system and hyperspectral imagery. Photogramm. Eng. Remote Sens 2004, 70, 703–715.
[18]  Feilhauer, H.; Schmidtlein, S. On variable relations between vegetation patterns and canopy reflectance. Ecol. Inf 2011, 6, 83–92.
[19]  R?der, A.; Kuemmerle, T.; Hill, J.; Papanastasis, V.; Tsiourlis, G. Adaptation of a grazing gradient concept to heterogeneous mediterranean rangelands using cost surface modelling. Ecol. Model 2007, 204, 387–398.
[20]  Bello, F.; Thuiller, W.; Leps, J.; Choler, P.; Clement, J.C.; Macek, P.; Sebastia, M.T.; Lavorel, S. Partitioning of functional diversity reveals the scale and extent of trait convergence and divergence. J. Veg. Sci 2009, 20, 475–486.
[21]  Darvishzadeh, R.; Skidmore, A.; Schlerf, M.; Atzberger, C.; Corsi, F.; Cho, M. LAI and chlorophyll estimation for a heterogeneous grassland using hyperspectral measurements. ISPRS J. Photogramm. Remote Sens 2008, 63, 409–426.
[22]  Fava, F.; Colombo, R.; Bocchi, S.; Meroni, M.; Sitzia, M.; Fois, N.; Zucca, C. Identification of hyperspectral vegetation indices for mediterranean pasture characterization. Int. J. Appl. Earth Obs. Geoinf 2009, 11, 233–243.
[23]  Mutanga, O.; Skidmore, A.K.; Prins, H. Predicting in situ pasture quality in the kruger national park, south africa, using continuum-removed absorption features. Remote Sens. Environ 2004, 89, 393–408.
[24]  Ferwerda, J.G.; Skidmore, A.K. Can nutrient status of four woody plant species be predicted using field spectrometry? ISPRS J. Photogramm. Remote Sens 2007, 62, 406–414.
[25]  Clevers, J.G.P.W.; Kooistra, L.; Schaepman, M.E. Estimating canopy water content using hyperspectral remote sensing data. Int. J. Appl. Earth Obs. Geoinf 2010, 12, 119–125.
[26]  Verrelst, J.; Romijn, E.; Kooistra, L. Mapping vegetation density in a heterogeneous river floodplain ecosystem using pointable chris/proba data. Remote Sens 2012, 4, 2866–2889.
[27]  Rivera, J.P.; Verrelst, J.; Leonenko, G.; Moreno, J. Multiple cost functions and regularization options for improved retrieval of leaf chlorophyll content and lai through inversion of the prosail model. Remote Sens 2013, 5, 3280–3304.
[28]  Dorigo, W.; Richter, R.; Baret, F.; Bamler, R.; Wagner, W. Enhanced automated canopy characterization from hyperspectral data by a novel two step radiative transfer model inversion approach. Remote Sens 2009, 1, 1139–1170.
[29]  Poorter, H.; Lambers, H.; Evans, J.R. Trait correlation networks: A whole-plant perspective on the recently criticized leaf economic spectrum. New Phytol. 2013, doi:10.1111/nph.12547.
[30]  Grossman, Y.; Ustin, S.; Jacquemoud, S.; Sanderson, E.; Schmuck, G.; Verdebout, J. Critique of stepwise multiple linear regression for the extraction of leaf biochemistry information from leaf reflectance data. Remote Sens. Environ 1996, 56, 182–193.
[31]  Mirik, M.; Norland, J.E.; Crabtree, R.L.; Biondini, M.E. Hyperspectral one-meter-resolution remote sensing in yellowstone national park, wyoming: I. Forage nutritional values. Rangeland Ecol. Manage 2005, 58, 452–458.
[32]  Pimstein, A.; Karnieli, A.; Bansal, S.K.; Bonfil, D.J. Exploring remotely sensed technologies for monitoring wheat potassium and phosphorus using field spectroscopy. Field Crops Res 2011, 121, 125–135.
[33]  Aptroot, A. Flora- en Vegetatiekartering van Kampina in 2009; Natuurmonumenten: ‘s-Graveland, The Netherlands, 2009; p. 41.
[34]  Murphy, J.; Riley, J. A modified single solution method for the determination of phosphate in natural waters. Anal. Chimica Acta 1962, 27, 31–36.
[35]  Poorter, H.; Villar, R. The Fate of Acquired Carbon in Plants: Chemical Composition and Construction Costs. In Plant Resource Allocation; Academic Press: San Diego, CA, USA, 1997; pp. 39–72.
[36]  Makkar, H.P.S. Quantification of Tannins in Tree and Shrub Foliage: A Laboratory Manual; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003.
[37]  Porra, R.; Thompson, W.; Kriedemann, P. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: Verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1989, 975, 384–394.
[38]  Diekmann, M. Species indicator values as an important tool in applied plant ecology—A review. Basic Appl. Ecol 2002, 4, 493–506.
[39]  Witte, J.P.M.; Wójcik, R.B.; Torfs, P.J.J.F.; De Haan, M.W.H.; Hennekens, S. Bayesian classification of vegetation types with gaussian mixture density fitting to indicator values. J. Veg. Sci 2007, 18, 605–612.
[40]  Ellenberg, H.; Weber, H.E.; Düll, R.; Witrth, V.; Werner, W.; Pauli?en, D. Zeigerwerte von pflanzen in mitteleuropa. Scripta Geobotanica 1991, 18, 1–97.
[41]  Roelofsen, H.D.; Kooistra, L.; van Bodegom, P.M.; Verrelst, J.; Krol, J.; Witte, J.P.M. Mapping a-priori defined plant associations using remotely sensed vegetation characteristics. Remote Sens. Environ 2014, 140, 639–651.
[42]  Zeleny, D.; Schaffers, A.P. Too good to be true: Pitfalls of using mean ellenberg indicator values in vegetation analyses. J. Veg. Sci 2012, 23, 419–431.
[43]  Welles, J.; Norman, J. Instrument for indirect measurement of canopy architecture. Agron. J 1991, 83, 818–825.
[44]  Hunt, E.R., Jr.; Rock, B.N. Detection of changes in leaf water content using near- and middle-infrared reflectances. Remote Sens. Environ 1989, 30, 43–54.
[45]  Morisette, J.T.; Baret, F.; Privette, J.L.; Myneni, R.B.; Nickeson, J.E.; Garrigues, S.; Shabanov, N.V.; Weiss, M.; Fernandes, R.A.; Leblanc, S.G. Validation of global moderate-resolution lai products: A framework proposed within the ceos land product validation subgroup. IEEE Trans. Geosci. Remote Sens 2006, 44, 1804–1817.
[46]  Savitzky, A.; Golay, M.J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem 1964, 36, 1627–1639.
[47]  Wold, S.; Sj?str?m, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemometr. Intell. Lab. Syst 2001, 58, 109–130.
[48]  R_Core_Team. R: A Language and Environment for Statistical Computing; R foundation for statistical computing: Vienna, Austria, 2013.
[49]  Mevik, B.H.; Wehrens, R. The PLS package: Principal component and partial least squares regression in r. J. Statist. Softw 2007, 18, 1–23.
[50]  Feilhauer, H.; Asner, G.P.; Martin, R.E.; Schmidtlein, S. Brightness-normalized partial least squares regression for hyperspectral data. J. Quant. Spectrosc. Radiat. Transfer 2010, 111, 1947–1957.
[51]  Ustin, S.L.; Gitelson, A.A.; Jacquemoud, S.; Schaepman, M.; Asner, G.P.; Gamon, J.A.; Zarco-Tejada, P. Retrieval of foliar information about plant pigment systems from high resolution spectroscopy. Remote Sens. Environ 2009, 113, S67–S77.
[52]  Jacquemoud, S.; Baret, F. Prospect: A model of leaf optical properties spectra. Remote Sens. Environ 1990, 34, 75–91.
[53]  Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; De Colstoun, E.B.; McMurtrey, J.E., III. Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sens. Environ 2000, 74, 229–239.
[54]  Cho, M.A.; Skidmore, A.K. A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method. Remote Sens. Environ 2006, 101, 181–193.
[55]  Im, J.; Jensen, J.R.; Jensen, R.R.; Gladden, J.; Waugh, J.; Serrato, M. Vegetation cover analysis of hazardous waste sites in utah and arizona using hyperspectral remote sensing. Remote Sens 2012, 4, 327–353.
[56]  Freschet, G.T.; Cornelissen, J.H.; Van Logtestijn, R.S.; Aerts, R. Evidence of the ‘plant economics spectrum’ in a subarctic flora. J. Ecol 2010, 98, 362–373.
[57]  Wright, I.J.; Reich, P.B.; Westoby, M.; Ackerly, D.D.; Baruch, Z.; Bongers, F.; Cavender-Bares, J.; Chapin, T.; Cornellssen, J.H.C.; Diemer, M.; et al. The worldwide leaf economics spectrum. Nature 2004, 428, 821–827.
[58]  Chuvieco, E.; Aguado, I.; Yebra, M.; Nieto, H.; Salas, J.; Martín, M.P.; Vilar, L.; Martínez, J.; Martín, S.; Ibarra, P. Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecol. Model 2010, 221, 46–58.
[59]  Sow, M.; Mbow, C.; Hély, C.; Fensholt, R.; Sambou, B. Estimation of herbaceous fuel moisture content using vegetation indices and land surface temperature from modis data. Remote Sens 2013, 5, 2617–2638.
[60]  Laughlin, D.C.; Joshi, C.; Bodegom, P.M.; Bastow, Z.A.; Fulé, P.Z. A predictive model of community assembly that incorporates intraspecific trait variation. Ecol. Lett 2012, 15, 1291–1299.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133