[1] | David DC, Ollikainen N, Trinidad JC, Cary MP, Burlingame AL, et al. (2010) Widespread protein aggregation as an inherent part of aging in c. elegans. PLoS biology 8: e1000450. doi: 10.1371/journal.pbio.1000450
|
[2] | Simons M, Keller P, Dichgans J, Schulz JB (2001) Cholesterol and alzheimers disease is there a link? Neurology 57: 1089–1093. doi: 10.1212/wnl.57.6.1089
|
[3] | Casserly I, Topol EJ (2004) Convergence of atherosclerosis and alzheimer's disease: inflammation, cholesterol, and misfolded proteins. The Lancet 363: 1139–1146. doi: 10.1016/s0140-6736(04)15900-x
|
[4] | Shobab LA, Hsiung GYR, Feldman HH (2005) Cholesterol in alzheimer's disease. The Lancet Neurology 4: 841–852. doi: 10.1016/s1474-4422(05)70248-9
|
[5] | Pappolla MA, Chyan YJ, Poeggeler B, Frangione B, Wilson G, et al. (2000) An assessment of the antioxidant and the antiamyloidogenic properties of melatonin: implications for alzheimer's disease. Journal of Neural Transmission 107: 203–231. doi: 10.1007/s007020050018
|
[6] | Reiter RJ, Tan DX, Manchester LC, El-Sawi MR (2002) Melatonin reduces oxidant damage and promotes mitochondrial respiration. Annals of the New York Academy of Sciences 959: 238–250. doi: 10.1111/j.1749-6632.2002.tb02096.x
|
[7] | Wu YH, Swaab DF (2005) The human pineal gland and melatonin in aging and alzheimer's disease. Journal of pineal research 38: 145–152. doi: 10.1111/j.1600-079x.2004.00196.x
|
[8] | Wang Jz, Wang Zf (2006) Role of melatonin in alzheimer-like neurodegeneration. Acta Pharmacologica Sinica 27: 41–49. doi: 10.1111/j.1745-7254.2006.00260.x
|
[9] | Maxfield FR, Tabas I (2005) Role of cholesterol and lipid organization in disease. Nature 438: 612–621. doi: 10.1038/nature04399
|
[10] | Gilbert BJ (2013) The role of amyloid in β the pathogenesis of alzheimer's disease. Journal of clinical pathology 66: 362–366. doi: 10.1136/jclinpath-2013-201515
|
[11] | Dante S, Hauss T, Dencher NA (2002) β-amyloid 25 to 35 is intercalated in anionic and zwitterionic lipid membranes to different extents. Biophysical journal 83: 2610–2616. doi: 10.1016/s0006-3495(02)75271-5
|
[12] | Dante S, Hauβ T, Dencher NA (2006) Cholesterol inhibits the insertion of the alzheimer's peptide a β (25–35) in lipid bilayers. European Biophysics Journal 35: 523–531. doi: 10.1007/s00249-006-0062-x
|
[13] | del Mar Martínez-Senac M, Villalaín J, Gómez-Fernández JC (1999) Structure of the alzheimer β-amyloid peptide (25–35) and its interaction with negatively charged phospholipid vesicles. European Journal of Biochemistry 265: 744–753. doi: 10.1046/j.1432-1327.1999.00775.x
|
[14] | Maltseva E, Brezesinski G (2004) Adsorption of amyloid beta (1–40) peptide to phosphatidylethanolamine monolayers. ChemPhysChem 5: 1185–1190. doi: 10.1002/cphc.200400045
|
[15] | Thakur G, Micic M, Leblanc RM (2009) Surface chemistry of alzheimer's disease: a langmuir monolayer approach. Colloids and Surfaces B: Biointerfaces 74: 436–456. doi: 10.1016/j.colsurfb.2009.07.043
|
[16] | Sani MA, Gehman JD, Separovic F (2011) Lipid matrix plays a role in abeta fibril kinetics and morphology. FEBS letters 585: 749–754. doi: 10.1016/j.febslet.2011.02.011
|
[17] | Hane F, Drolle E, Gaikwad R, Faught E, Leonenko Z (2011) Amyloid-β aggregation on model lipid membranes: An atomic force microscopy study. Journal of Alzheimer's Disease 26: 485–494.
|
[18] | Ding H, Schauerte JA, Steel DG, Gafni A (2012) β-amyloid (1–40) peptide interactions with supported phospholipid membranes: A single-molecule study. Biophysical journal 103: 1500–1509. doi: 10.1016/j.bpj.2012.08.051
|
[19] | Ahyayauch H, Raab M, Busto JV, Andraka N, Arrondo JLR, et al. (2012) Binding of β-amyloid (1-42) peptide to negatively charged phospholipid membranes in the liquid-ordered state: Modeling and experimental studies. Biophysical Journal 103: 453–463. doi: 10.1016/j.bpj.2012.06.043
|
[20] | Leventis PA, Grinstein S (2010) The distribution and function of phosphatidylserine in cellular membranes. Annual review of biophysics 39: 407–427. doi: 10.1146/annurev.biophys.093008.131234
|
[21] | Mason RP, Estermyer JD, Kelly JF, Mason PE (1996) Alzheimer's disease amyloid β peptide 25-35 is localized in the membrane hydrocarbon core: X-ray diffraction analysis. Biochemical and biophysical research communications 222: 78–82. doi: 10.1006/bbrc.1996.0699
|
[22] | Dante S, Hauss T, Steitz R, Canale C, Dencher NA (2011) Nanoscale structural and mechanical effects of beta-amyloid (1-42) on polymer cushioned membranes: A combined study by neutron reflectometry and {AFM} force spectroscopy. Biochimica et Biophysica Acta (BBA) - Biomembranes 1808: 2646–2655. doi: 10.1016/j.bbamem.2011.07.024
|
[23] | Rheinst?dter MC, Schmalzl K, Wood K, Strauch D (2009) Protein-protein interaction in purple membrane. Phys Rev Lett 103: 128104. doi: 10.1103/physrevlett.103.128104
|
[24] | Casuso I, Sens P, Rico F, Scheuring S (2010) Experimental evidence for membrane-mediated protein-protein interaction. Biophysical Journal 99: L47–L49. doi: 10.1016/j.bpj.2010.07.028
|
[25] | Armstrong CL, Sandqvist E, Rheinst?dter MC (2011) Protein-protein interactions in membranes. Protein and Peptide Letters 18: 344–353. doi: 10.2174/092986611794653941
|
[26] | Pappolla MA, Sos M, Omar RA, Bick RJ, Hickson-Bick DL, et al. (1997) Melatonin prevents death of neuroblastoma cells exposed to the alzheimer amyloid peptide. The Journal of neuroscience 17: 1683–1690.
|
[27] | Fonseca ACR, Resende R, Oliveira CR, Pereira CM (2010) Cholesterol and statins in alzheimer's disease: current controversies. Experimental neurology 223: 282–293. doi: 10.1016/j.expneurol.2009.09.013
|
[28] | Puglielli L, Tanzi RE, Kovacs DM (2003) Alzheimer's disease: the cholesterol connection. Nature neuroscience 6: 345–351. doi: 10.1038/nn0403-345
|
[29] | Gibson Wood W, Eckert GP, Igbavboa U, Müller WE (2003) Amyloid beta-protein interactions with membranes and cholesterol: causes or casualties of alzheimer's disease. Biochimica et Biophysica Acta (BBA)-Biomembranes 1610: 281–290. doi: 10.1016/s0005-2736(03)00025-7
|
[30] | De Lima VR, Caro MS, Munford ML, Desbat B, Dufourc E, et al. (2010) Influence of melatonin on the order of phosphatidylcholine-based membranes. Journal of pineal research 49: 169–175. doi: 10.1111/j.1600-079x.2010.00782.x
|
[31] | Drolle E, Ku?erka N, Hoopes M, Choi Y, Katsaras J, et al. (2013) Effect of melatonin and cholesterol on the structure of dopc and dppc membranes. Biochimica et Biophysica Acta (BBA)-Biomembranes 1828: 22472254. doi: 10.1016/j.bbamem.2013.05.015
|
[32] | Saija A, Tomaino A, Trombetta D, Pellegrino ML, Tita B, et al. (2002) Interaction of melatonin with model membranes and possible implications in its photoprotective activity. European journal of pharmaceutics and biopharmaceutics 53: 209–215. doi: 10.1016/s0939-6411(01)00239-9
|
[33] | Choucair A, Chakrapani M, Chakravarthy B, Katsaras J, Johnston L (2007) Preferential accumulation of aβ (1–42) on gel phase domains of lipid bilayers: An afm and fluorescence study. Biochimica et Biophysica Acta (BBA)-Biomembranes 1768: 146–154. doi: 10.1016/j.bbamem.2006.09.005
|
[34] | Drolle E, Gaikwad RM, Leonenko Z (2012) Nanoscale electrostatic domains in cholesterol-laden lipid membranes create a target for amyloid binding. Biophysical Journal 103: L27–L29. doi: 10.1016/j.bpj.2012.06.053
|
[35] | Chaudhuri A, Chattopadhyay A (2011) Transbilayer organization of membrane cholesterol at low concentrations: Implications in health and disease. Biochimica et Biophysica Acta (BBA) - Biomembranes 1808: 19–25. doi: 10.1016/j.bbamem.2010.10.013
|
[36] | Simons K, Ikonen E (1997) Functional rafts in cell membranes. Nature 387: 569572.
|
[37] | Simons K, Ikonen E (2000) How cells handle cholesterol. Science 290: 1721–1726. doi: 10.1126/science.290.5497.1721
|
[38] | Engelman DM (2005) Membranes are more mosaic than fluid. Nature 438: 578–580. doi: 10.1038/nature04394
|
[39] | Niemel? PS, Ollila S, Hyvnen MT, Karttunen M, Vattulainen I (2007) Assessing the nature of lipid raft membranes. PLoS Comput Biol 3: e34. doi: 10.1371/journal.pcbi.0030034.eor
|
[40] | Brown DA, London E (2000) Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J Biol Chem 275: 17221. doi: 10.1074/jbc.r000005200
|
[41] | Petrie RJ, Schnetkamp PP, Patel KD, Awasthi-Kalia M, Deans JP (2000) Transient translocation of the b cell receptor and src homology 2 domain-containing inositol phosphatase to lipid rafts: evidence toward a role in calcium regulation. J Immunol 165: 1220–1227. doi: 10.4049/jimmunol.165.3.1220
|
[42] | Papanikolaou A, Papafotika A, Murphy C, Papamarcaki T, Tsolas O, et al. (2005) Cholesterol-dependent lipid assemblies regulate the activity of the ecto-nucleotidase cd39. J Biol Chem 280: 26406–26414. doi: 10.1074/jbc.m413927200
|
[43] | Pike L (2006) Rafts defined: a report on the keystone symposium on lipid rafts and cell function. J Lipid Res 47: 1597. doi: 10.1194/jlr.e600002-jlr200
|
[44] | Pike LJ (2009) The challenge of lipid rafts. J Lipid Res 50: S323–S328. doi: 10.1194/jlr.r800040-jlr200
|
[45] | Lingwood D, Simons K (2009) Lipid rafts as a membraneorganizing principle. Science 327: 46–50. doi: 10.1126/science.1174621
|
[46] | Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, et al. (2009) Direc observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457: 1159–1162. doi: 10.1038/nature07596
|
[47] | van der Goot FG, Harder T (2001) Raft membrane domains: from a liquid-ordered membrane phase to a site of pathogen attack. Seminars in Immunology 13: 89–97. doi: 10.1006/smim.2000.0300
|
[48] | Lenne PF, Nicolas A (2009) Physics puzzles on membrane domains posed by cell biology. Soft Matter 5: 2841–2848. doi: 10.1039/b822956b
|
[49] | Apajalahti T, Niemel? P, Govindan PN, Miettinen MS, Salonen E, et al. (2009) Concerted diffusion of lipids in raft-like membranes. Faraday Discuss: 2010.
|
[50] | Watkins E, Millerb C, Majewski J, Kuhl T (2011) Membrane texture induced by specific protein binding and receptor clustering: active roles for lipids in cellular function. PNAS 108: 6975–6980. doi: 10.1073/pnas.1014579108
|
[51] | Hall A, Róg T, Karttunen M, Vattulainen I (2010) Role of glycolipids in lipid rafts: A view through atomistic molecular dynamics simulations with galactosylceramide. The Journal of Physical Chemistry B 114: 7797–7807. doi: 10.1021/jp912175d
|
[52] | Simons K, Gerl MJ (2010) Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol 11: 688–699. doi: 10.1038/nrm2977
|
[53] | Rheinst?dter MC, Mouritsen OG (2013) Small-scale structures in fluid cholesterol-lipid bilayers. Curr Opin Colloid Interface Sci 18: 440–447. doi: 10.1016/j.cocis.2013.07.001
|
[54] | Meinhardt S, Vink RLC, Schmid F (2013) Monolayer curvature stabilizes nanoscale raft domains in mixed lipid bilayers. Proc Natl Acad Sci USA 110: 4476–4481. doi: 10.1073/pnas.1221075110
|
[55] | Armstrong CL, Marquardt D, Dies H, Ku?erka N, Yamani Z, et al. (2013) The observation of highly ordered domains in membranes with cholesterol. PLOS ONE 8: e66162. doi: 10.1371/journal.pone.0066162
|
[56] | Barrett M, Zheng S, Toppozini L, Alsop R, Dies H, et al. (2013) Solubility of cholesterol in lipid membranes and the formation of immiscible cholesterol plaques at high cholesterol concentrations. Soft Matter 9: 9342–9351. doi: 10.1039/c3sm50700a
|
[57] | Rapaport H, Kuzmenko I, Lafont S, Kjaer K, Howes PB, et al. (2001) Cholesterol monohydrate nucleation in ultrathin films on water. Biophysical Journal 81: 2729–2736. doi: 10.1016/s0006-3495(01)75915-2
|
[58] | Solomonov I, Weygand MJ, Kjaer K, Rapaport H, Leiserowitz L (2005) Trapping crystal nucleation of cholesterol monohydrate: Relevance to pathological crystallization. Biophysical Journal 88: 1809–1817. doi: 10.1529/biophysj.104.044834
|
[59] | Solomonov I, Daillant J, Fragneto G, Kjaer K, Micha J, et al. (2009) Hydrated cholesterol: Phospholipid domains probed by synchrotron radiation. The European Physical Journal E 30: 215–221. doi: 10.1140/epje/i2009-10498-2
|
[60] | Ziblat R, Leiserowitz L, Addadi L (2010) Crystalline domain structure and cholesterol crystal nucleation in single hydrated dppc:cholesterol:popc bilayers. Journal of the American Chemical Society 132: 9920–9927. doi: 10.1021/ja103975g
|
[61] | Ziblat R, Leiserowitz L, Addadi L (2011) Crystalline lipid domains: Characterization by x-ray diffraction and their relation to biology. Angewandte Chemie International Edition 50: 3620–3629. doi: 10.1002/anie.201004470
|
[62] | Ziblat R, Fargion I, Leiserowitz L, Addadi L (2012) Spontaneous formation of two-dimensional and three-dimensional cholesterol crystals in single hydrated lipid bilayers. Biophysical Journal 103: 255–264. doi: 10.1016/j.bpj.2012.05.025
|
[63] | Tulenko TN, Chen M, Mason PE, Mason RP (1998) Physical effects of cholesterol on arterial smooth muscle membranes: evidence of immiscible cholesterol domains and alterations in bilayer width during atherogenesis. Journal of Lipid Research 39: 947–956.
|
[64] | Mason RP, Tulenko TN, Jacob RF (2003) Direct evidence for cholesterol crystalline domains in biological membranes: role in human pathobiology. Biochimica et Biophysica Acta (BBA) - Biomembranes 1610: 198–207. doi: 10.1016/s0005-2736(03)00018-x
|
[65] | Raguz M, Mainali L, Widomska J, Subczynski WK (2011) The immiscible cholesterol bilayer domain exists as an integral part of phospholipid bilayer membranes. Biochimica et Biophysica Acta (BBA) - Biomembranes 1808: 1072–1080. doi: 10.1016/j.bbamem.2010.12.019
|
[66] | D′Ursi AM, Armenante MR, Guerrini R, Salvadori S, Sorrentino G, et al. (2004) Solution structure of amyloid β-peptide (25-35) in different media. Journal of Medicinal Chemistry 47: 4231–4238. doi: 10.1021/jm040773o
|
[67] | Crescenzi O, Tomaselli S, Guerrini R, Salvadori S, D′Ursi AM, et al. (2002) Solution structure of the alzheimer amyloid β-peptide (1–42) in an apolar microenvironment. European Journal of Biochemistry 269: 5642–5648. doi: 10.1046/j.1432-1033.2002.03271.x
|
[68] | Hristova K, White SH (1998) Determination of the hydrocarbon core structure of fluid dioleoylphosphocholine (dopc) bilayers by x-ray diffraction using specific bromination of the double-bonds: Effect of hydration. Biophysical Journal 74: 2419–2433. doi: 10.1016/s0006-3495(98)77950-0
|
[69] | Pabst G, Ku?erka N, Nieh MP, Rheinst?dter M, Katsaras J (2010) Applications of neutron and x-ray scattering to the study of biologically relevant model membranes. Chemistry and Physics of Lipids 163: 460–479. doi: 10.1016/j.chemphyslip.2010.03.010
|
[70] | Fragneto G, Rheinst?dter M (2007) Structural and dynamical studies from bio-mimetic systems: an overview. Comptes Rendus Physique 8: 865–883. doi: 10.1016/j.crhy.2007.09.003
|
[71] | Mills TT, Toombes GES, Tristram-Nagle S, Smilgies DM, Feigenson GW, et al. (2008) Order parameters and areas in fluid-phase oriented lipid membranes using wide angle x-ray scattering. Biophysical Journal 95: 669–681. doi: 10.1529/biophysj.107.127845
|
[72] | Barrett MA, Zheng S, Roshankar G, Alsop RJ, Belanger RK, et al. (2012) Interaction of aspirin (acetylsalicylic acid) with lipid membranes. PLoS ONE 7: e34357. doi: 10.1371/journal.pone.0034357
|
[73] | Tristram-Nagle S, Liu Y, Legleiter J, Nagle JF (2002) Structure of gel phase dmpc determined by x-ray diffraction. Biophysical Journal 83: 3324–3335. doi: 10.1016/s0006-3495(02)75333-2
|
[74] | Petrache H, Dodd S, Brown M (2000) Area per lipid and acyl length distributions in fluid phosphatidylcholines determined by (2)H NMR spectroscopy. Biophys J 79: 3172–3192. doi: 10.1016/s0006-3495(00)76551-9
|
[75] | Pan J, Heberle FA, Tristram-Nagle S, Szymanski M, Koepfinger M, et al. (2012) Molecular structures of fluid phase phosphatidylglycerol bilayers as determined by small angle neutron and x-ray scattering. Biochimica et Biophysica Acta - Biomembranes 1818: 2135–2148. doi: 10.1016/j.bbamem.2012.05.007
|
[76] | Toppozini L, Armstrong CL, Barrett MA, Zheng S, Luo L, et al. (2012) Partitioning of ethanol into lipid membranes and its effect on fluidity and permeability as seen by x-ray and neutron scattering. Soft Matter 8: 11839–11849. doi: 10.1039/c2sm26546j
|
[77] | Buchsteiner A, Hauβ T, Dante S, Dencher N (2010) Alzheimer's diesease amyloid-β peptide analogue alters the ps-dynamics of phospholipid membranes. Biochim Biophy Acta 1798: 1969–1976. doi: 10.1016/j.bbamem.2010.06.024
|
[78] | Buchsteiner A, Hauβ T, Dencher NA (2012) Influence of amyloid-β peptides with different lengths and amino acid sequences on the lateral diffusion of lipids in model membranes. Soft Matter 8: 424–429. doi: 10.1039/c1sm06823g
|
[79] | Ku?erka N, Liu Y, Chu N, Petrache HI, Tristram-Nagle S, et al. (2005) Structure of fully hydrated fluid phase DMPC and DLPC lipid bilayers using x-ray scattering from oriented multilamellar arrays and from unilamellar vesicles. Biophys J 88: 2626–2637. doi: 10.1529/biophysj.104.056606
|
[80] | Ku?erka N, Nagle JF, Sachs JN, Feller SE, Pencer J, et al. (2008) Lipid bilayer structure determined by the simultaneous analysis of neutron and x-ray scattering data. Biophysical Journal 95: 2356–2367. doi: 10.1529/biophysj.108.132662
|
[81] | Nagle JF (2013) Introductory lecture: Basic quantities in model biomembranes. Faraday Discuss 161: 11–29. doi: 10.1039/c2fd20121f
|
[82] | Strodel B, Lee JW, Whittleston CS, Wales DJ (2010) Transmembrane structures for alzheimers aβ1–42 oligomers. Journal of the American Chemical Society 132: 13300–13312. doi: 10.1021/ja103725c
|
[83] | Poojari C, Kukol A, Strodel B (2012) How the amyloid-β peptide and membranes affect each other: An extensive simulation study. Biochimica et Biophysica Acta (BBA)-Biomembranes.
|
[84] | Poojari C, Strodel B (2013) Stability of transmembrane amyloid β-peptide and membrane integrity tested by molecular modeling of site-specific aβ 42 mutations. PloS one 8: e78399. doi: 10.1371/journal.pone.0078399
|
[85] | Tsai HHG, Lee JB, Tseng SS, Pan XA, Shih YC (2010) Folding and membrane insertion of amyloid-beta (25–35) peptide and its mutants: Implications for aggregation and neurotoxicity. Proteins: Structure, Function, and Bioinformatics 78: 1909–1925. doi: 10.1002/prot.22705
|
[86] | Huang HW (2000) Action of antimicrobial peptides: two-state model. Biochemistry 39: 8347–8352. doi: 10.1021/bi000946l
|
[87] | Engelman DM, Chen Y, Chin CN, Curran AR, Dixon AM, et al. (2003) Membrane protein folding: beyond the two stage model. Febs Letters 555: 122–125. doi: 10.1016/s0014-5793(03)01106-2
|
[88] | Heyden M, Freites JA, Ulmschneider MB, White SH, Tobias DJ (2012) Assembly and stability of α-helical membrane proteins. Soft matter 8: 7742–7752. doi: 10.1039/c2sm25402f
|
[89] | Ulmschneider JP, Smith JC, White SH, Ulmschneider MB (2011) In silico partitioning and transmembrane insertion of hydrophobic peptides under equilibrium conditions. Journal of the American Chemical Society 133: 15487–15495. doi: 10.1021/ja204042f
|
[90] | Vance DE, Van den Bosch H (2000) Cholesterol in the year 2000. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids 1529: 1–8. doi: 10.1016/s1388-1981(00)00133-5
|
[91] | Mouritsen OG (2010) The liquid-ordered state comes of age. BBA-BIOMEMBRANES 1798: 1286–1288. doi: 10.1016/j.bbamem.2010.02.017
|
[92] | Armstrong CL, Barrett MA, Hiess A, Salditt T, Katsaras J, et al. (2012) Effect of cholesterol on the lateral nanoscale dynamics of fluid membranes. Eur Biophys J 41: 901–913. doi: 10.1007/s00249-012-0826-4
|
[93] | Huang J, Feigenson GW (1999) A microscopic interaction model of maximum solubility of cholesterol in lipid bilayers. Biophysical Journal 76: 2142–2157. doi: 10.1016/s0006-3495(99)77369-8
|
[94] | Dai J, Alwarawrah M, Huang J (2010) Instability of cholesterol clusters in lipid bilayers and the cholesterol's umbrella effect. The Journal of Physical Chemistry B 114: 840–848. doi: 10.1021/jp909061h
|
[95] | de Meyer F, Smit B (2009) Effect of cholesterol on the structure of a phospholipid bilayer. Proc Natl Acad Sci USA 106: 3654–3658. doi: 10.1073/pnas.0809959106
|
[96] | de Meyer FJM, Benjamini A, Rodgers JM, Misteli Y, Smit B (2010) Molecular simulation of the dmpc-cholesterol phase diagram. The Journal of Physical Chemistry B 114: 10451–10461. doi: 10.1021/jp103903s
|
[97] | Sodt AJ, Sandar ML, Gawrisch K, Pastor RW, Lyman E (2014) The molecular structure of the liquid-ordered phase of lipid bilayers. Journal of the American Chemical Society 136: 725–732. doi: 10.1021/ja4105667
|
[98] | Armstrong CL, H?uβler W, Seydel T, Katsaras J, Rheinst?dter MC (2014) Nanosecond lipid dynamics in membranes containing cholesterol. Soft Matter 10: 2600–2611. doi: 10.1039/c3sm51757h
|
[99] | Williams TL, Serpell LC (2011) Membrane and surface interactions of alzheimers aβ peptide insights into the mechanism of cytotoxicity. FEBS Journal 278: 3905–3917. doi: 10.1111/j.1742-4658.2011.08228.x
|
[100] | Sasahara K, Morigaki K, Shinya K (2013) Effects of membrane interaction and aggregation of amyloid β-peptide on lipid mobility and membrane domain structure. Phys Chem Chem Phys 15: 8929–8939. doi: 10.1039/c3cp44517h
|
[101] | Jao SC, Ma K, Talafous J, Orlando R, Zagorski MG (1997) Trifluoroacetic acid pretreatment reproducibly disaggregates the amyloid β-peptide. Amyloid 4: 240–252. doi: 10.3109/13506129709003835
|
[102] | Nagle JF, Wiener MC (1989) Relations for lipid bilayers. Biophys J 55: 309–313. doi: 10.1016/s0006-3495(89)82806-1
|
[103] | Nagle J, Zhang R, Tristram-Nagle S, Sun W, Petrache H, et al. (1996) X-ray structure determination of fully hydrated lα phase dipalmitoylphosphatidylcholine bilayers. Biophys J 70: 1419–1431. doi: 10.1016/s0006-3495(96)79701-1
|
[104] | King GI, Worthington CR (1971) Analytic continuation as a method of phase determination. Physics Letters 35A: 259–260. doi: 10.1016/0375-9601(71)90371-9
|
[105] | Adachi T (2000) A new method for determining the phase in the x-ray diffraction structure analysis of phosphatidylcholine:alcohol. Chemistry and Physics of Lipids 107: 93–97. doi: 10.1016/s0009-3084(00)00154-7
|
[106] | Worcester D, Franks N (1976) Structural analysis of hydrated egg lecithin and cholesterol bilayers ii. neutron diffraction. Journal of molecular biology 100: 359–378. doi: 10.1016/s0022-2836(76)80068-x
|
[107] | Ku?erka N, Nieh MP, Pencer J, Sachs JN, Katsaras J (2009) What determines the thickness of a biological membrane. General physiology and biophysics 28: 117–125. doi: 10.4149/gpb_2009_02_117
|
[108] | Nováková E, Giewekemeyer K, Salditt T (2006) Structure of two-component lipid membranes on solid support: An x-ray reflectivity study. Phys Rev E 74: 051911. doi: 10.1103/physreve.74.051911
|