Implantable devices have important applications in biomedical sensor networks used for biomedical monitoring, diagnosis and treatment, etc. In this paper, an implant intra-body communication (IBC) method based on capacitive coupling has been proposed, and the modeling and characterization of this kind of IBC has been investigated. Firstly, the transfer function of the implant IBC based on capacitive coupling was derived. Secondly, the corresponding parameters of the transfer function are discussed. Finally, both measurements and simulations based on the proposed transfer function were carried out, while some important conclusions have been achieved, which indicate that the achieved transfer function and conclusions are able to help to achieve an implant communication method with the highly desirable characteristics of low power consumption, high data rate, high transmission quality, etc.
References
[1]
Zimmerman, T.G. Personal Area Networks (PAN): Near-Field Intra-Body Communication. Ms.C. Thesis, Massachusetts Institute of Technology, Boston, MA, USA, 1995.
[2]
Cho, N.; Yoo, J.; Song, S.-J.; Lee, J.; Jeon, S.; Yoo, H.-J. The human body characteristics as a signal transmission medium for intrabody communication. IEEE Trans. Microw Theory Tech. 2007, 55, 1080–1085.
[3]
Callejon, M.; Roa, L.; Reina-Tosina, L.; Naranjo, D. Study of attenuation and dispersion through the skin in intra-body communications systems. IEEE Trans. Inform. Technol. Biomed. 2012, 16, 159–165.
[4]
Xu, R.; Zhu, H.; Yuan, J. Circuit-Coupled FEM Analysis of the Electrical-Field Type Intra-Body Communication Channel. Proceedings of the IEEE Biomedical Circuits and Systems Conference (BioCAS), Beijing, China, 26–28 November 2009; pp. 221–224.
[5]
Wegmueller, M.S. Intra-Body Communication for Biomedical Sensor Networks. Ph.D. Thesis, ETH Zurich, Zurich, Switzerland, 2007.
Sasamori, T.; Takahashi, M.; Uno, T. Transmission mechanism of wearable device for on-body wireless communications. IEEE Trans. Anten. Propag. 2009, 57, 936–942.
[8]
Lin, Y.T.; Lin, Y.S.; Chen, C.H.; Chen, H.C.; Yang, Y.C.; Lu, S.S. A 0.5-V biomedical system-on-a-chip for intrabody communication system. IEEE Trans. Ind. Electron. 2011, 58, 690–699.
[9]
Shinagawa, M.; Fukumoto, M.; Ochiai, K.; Kyuragi, H. A near-field sensing transceiver for intrabody communication based on the electrooptic effect. IEEE Trans. Instrum. Meas. 2004, 53, 1533–1538.
[10]
Sasaki, A.; Shinagawa, M.; Ochiai, K. Principles and demonstration of intrabody communication with a sensitive electrooptic sensor. IEEE Trans. Instrum. Meas. 2009, 58, 457–466.
[11]
Seyedi, M.; Kibret, B.; Lai, D.T.H.; Faulkner, M. A survey on intrabody communications for body area network applications. IEEE Trans. Biomed. Eng. 2013, 60, 2067–2079.
[12]
Santagati, G.E.; Melodia, T.; Galluccio, L.; Palazzo, S. Distributed MAC and Rate Adaptation for Ultrasonically Networked Implantable Sensors. Proceedings of the IEEE Conference on Sensor, Mesh and Ad Hoc Communications and Networks (SECON), New Orleans, LA, USA, 24–27 June 2013; pp. 104–112.
[13]
Zhen, B.; Li, H.B.; Kohno, R. Networking issues in medical implant communications. Int. J. Multimedia Ubiquit. Eng. 2009, 4, 23–38.
[14]
Estudillo, M.A.; Naranjo, D.; Roa, L.M.; Reina-Tosina, J. Intrabody Communications (IBC) as an Alternative Proposal for Biomedical Wearable Systems. In Handbook of Research on Developments in E-Health and Telemedicine: Technological and Social Perspectives; Cruz-Cunha, M.M., Ed.; IGI Global: Hershey, PA, USA, 2009; pp. 1–28.
[15]
Wegmueller, M.S.; Hediger, M.; Kaufmann, T.; Oberle, M.; Kuster, N.; Fichtner, W. Investigation on Coupling Strategies for Wireless Implant Communications. Proceedings of the Instrumentation and Measurement Technology Conference, Warsaw, Poland, 1–3 May 2007; pp. 1–4.
[16]
Chen, X.M.; Mak, P.U.; Pun, S.H.; Gao, Y.M.; Lam, C.T.; Vai, M.I.; Du, M. Study of channel characteristics for galvanic-type intra-body communication based on a transfer function from a quasi-static field model. Sensors 2012, 12, 16433–16450.
[17]
Callejon, M.; Naranjo, D.; Reina-Tosina, J.; Roa, L. Distributed circuit modeling of galvanic and capacitive coupling for intrabody communication. IEEE Trans. Biomed. Eng. 2012, 59, 3263–3269.
[18]
Xu, R.; Zhu, H.; Yuan, J. Electric-field intrabody communication channel modeling with finite-element method. IEEE Trans. Biomed. Eng. 2011, 58, 705–712.
[19]
Hachisuka, K.; Terauchi, Y.; Kishi, Y.; Sasaki, K.; Hirota, T.; Hosaka, H.; Ito, K. Simplified circuit modeling and fabrication of intra body communication devices. Sens. Actuat. A Phys. 2006, 130/131, 322–330.
[20]
Song, Y.; Zhang, K.; Hao, Q.; Rolland, P. Modeling and characterization of the electrostatic coupling intra-body communication based on Mach-Zehnder electro-optical modulation. Opt. Express 2012, 20, 13488–13500.
[21]
Song, Y.; Zhang, K.; Hao, Q.; Wang, J.; Jin, X.; Sun, H. Signal transmission in a human body medium-based body sensor network using a Mach-Zehnder electro-optical sensor. Sensors 2012, 12, 16557–16570.
[22]
Lucev, Z.; Krois, I.; Cifrek, M. A Capacitive Intrabody Communication Channel from 100 kHz to 100 MHz. Proceedings of the IEEE Instrumentation and Measurement Technology, Beijing, China, 10–12 May 2011; pp. 1–4.
[23]
Gottling, J.G. Node and mesh analysis by inspection. IEEE Trans. Educ. 1995, 38, 312–316.
[24]
Karris, S.T. Circuit Analysis I: With MATLAB Applications; Orchard Publications: Fremont, CA, USA, 2003; pp. 8–20.
[25]
Song, Y.; Hao, Q.; Zhang, K.; Wang, M.; Chu, Y.F.; Kang, B.Z. The simulation method of the galvanic coupling intrabody communication with different signal transmission paths. IEEE Trans. Instrum. Meas. 2011, 60, 1257–1266.
[26]
Gabriely, S.; Lau, R.W.; Gabriel, C. The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues. Phys. Med. Biol. 1996, 41, 2271–2293.
[27]
Maruvada, P.S.; Hylten-Cavallius, N. Capacitance calculations for some basic high voltage electrode configurations. IEEE Trans. Power Appar. Syst. 1975, 94, 1708–1713.
[28]
Gao, Y.M.; Pun, S.H.; Du, M.; Vai, M.I.; Mak, P.U. Quasi-static Field Modeling and Validation for Intra-body Communication. Proceedings of the Bioinformatics and Biomedical Engineering (ICBBE), Beijing, China, 11–13 June 2009; pp. 1–4.
[29]
Lay-Ekuakille, A.; Vendramin, G.; Trotta, A. Design of an Energy Harvesting Conditioning Unit for Hearing Aids. Proceedings of the 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; pp. 2310–2313.
[30]
Ben Amor, N.; Kanoun, O.; Lay-Ekuakille, A.; Vendramin, G.; Specchia, G.; Trotta, A. Energy Harvesting from Human Body Movements for Biomedical Autonomous Systems. Proceedings of the 7th IEEE Conference on Sensors, Lecce, Italy, 26–29 October 2008; pp. 678–680.